DeepLensNet: Deep learning automated diagnosis and quantitative classification of cataract type and severity

Purpose - To develop deep learning models to perform automated diagnosis and quantitative classification of age-related cataract from anterior segment photographs. - Design - DeepLensNet was trained by applying deep learning models to the Age-Related Eye Disease Study (AREDS) dataset. - Participants...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Keenan, Tiarnan D. L. (VerfasserIn) , Chen, Qingyu (VerfasserIn) , Agrón, Elvira (VerfasserIn) , Tham, Yih-Chung (VerfasserIn) , Goh, Jocelyn Hui Lin (VerfasserIn) , Lei, Xiaofeng (VerfasserIn) , Ng, Yi Pin (VerfasserIn) , Liu, Yong (VerfasserIn) , Xu, Xinxing (VerfasserIn) , Cheng, Ching-Yu (VerfasserIn) , Bikbov, Mukharram M. (VerfasserIn) , Jonas, Jost B. (VerfasserIn) , Bhandari, Sanjeeb (VerfasserIn) , Broadhead, Geoffrey K. (VerfasserIn) , Colyer, Marcus H. (VerfasserIn) , Corsini, Jonathan (VerfasserIn) , Cousineau-Krieger, Chantal (VerfasserIn) , Gensheimer, William (VerfasserIn) , Grasic, David (VerfasserIn) , Lamba, Tania (VerfasserIn) , Magone, M. Teresa (VerfasserIn) , Maiberger, Michele (VerfasserIn) , Oshinsky, Arnold (VerfasserIn) , Purt, Boonkit (VerfasserIn) , Shin, Soo Y. (VerfasserIn) , Thavikulwat, Alisa T. (VerfasserIn) , Lu, Zhiyong (VerfasserIn) , Chew, Emily Y. (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: May 2022
In: Ophthalmology
Year: 2022, Jahrgang: 129, Heft: 5, Pages: 571-584
ISSN:1549-4713
DOI:10.1016/j.ophtha.2021.12.017
Online-Zugang:Verlag, kostenfrei, Volltext: https://doi.org/10.1016/j.ophtha.2021.12.017
Verlag, kostenfrei, Volltext: https://www.sciencedirect.com/science/article/pii/S0161642021009672
Volltext
Verfasserangaben:Tiarnan D.L. Keenan, Qingyu Chen, Elvira Agrón, Yih-Chung Tham, Jocelyn Hui Lin Goh, Xiaofeng Lei, Yi Pin Ng, Yong Liu, Xinxing Xu, Ching-Yu Cheng, Mukharram M. Bikbov, Jost B. Jonas, Sanjeeb Bhandari, Geoffrey K. Broadhead, Marcus H. Colyer, Jonathan Corsini, Chantal Cousineau-Krieger, William Gensheimer, David Grasic, Tania Lamba, M. Teresa Magone, Michele Maiberger, Arnold Oshinsky, Boonkit Purt, Soo Y. Shin, Alisa T. Thavikulwat, Zhiyong Lu, Emily Y. Chew, for the AREDS Deep Learning Research Group

MARC

LEADER 00000caa a2200000 c 4500
001 1881562778
003 DE-627
005 20240325174228.0
007 cr uuu---uuuuu
008 240226s2022 xx |||||o 00| ||eng c
024 7 |a 10.1016/j.ophtha.2021.12.017  |2 doi 
035 |a (DE-627)1881562778 
035 |a (DE-599)KXP1881562778 
035 |a (OCoLC)1425214976 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 33  |2 sdnb 
100 1 |a Keenan, Tiarnan D. L.  |e VerfasserIn  |0 (DE-588)1321677804  |0 (DE-627)1881563707  |4 aut 
245 1 0 |a DeepLensNet: Deep learning automated diagnosis and quantitative classification of cataract type and severity  |c Tiarnan D.L. Keenan, Qingyu Chen, Elvira Agrón, Yih-Chung Tham, Jocelyn Hui Lin Goh, Xiaofeng Lei, Yi Pin Ng, Yong Liu, Xinxing Xu, Ching-Yu Cheng, Mukharram M. Bikbov, Jost B. Jonas, Sanjeeb Bhandari, Geoffrey K. Broadhead, Marcus H. Colyer, Jonathan Corsini, Chantal Cousineau-Krieger, William Gensheimer, David Grasic, Tania Lamba, M. Teresa Magone, Michele Maiberger, Arnold Oshinsky, Boonkit Purt, Soo Y. Shin, Alisa T. Thavikulwat, Zhiyong Lu, Emily Y. Chew, for the AREDS Deep Learning Research Group 
264 1 |c May 2022 
300 |b Illustrationen 
300 |a 14 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Online verfügbar: 3 January 2022, Artikelversion: 20 April 2022 
500 |a AREDS Deep Learning Research Group: Priscilla Ajilore, Alex Akman, Nadim S. Azar, William S. Azar, Bryan Chan, Victor Cox, Amisha D. Dave, Rachna Dhanjal, Mary Donovan, Maureen Farrell, Francisca Finkel, Timothy Goblirsch, Wesley Ha, Christine Hill, Aman Kumar, Kristen Kent, Arielle Lee, Pujan Patel, David Peprah, Emma Piliponis, Evan Selzer, Benjamin Swaby, Stephen Tenney, and Alexander Zeleny 
500 |a Gesehen am 26.02.2024 
520 |a Purpose - To develop deep learning models to perform automated diagnosis and quantitative classification of age-related cataract from anterior segment photographs. - Design - DeepLensNet was trained by applying deep learning models to the Age-Related Eye Disease Study (AREDS) dataset. - Participants - A total of 18 999 photographs (6333 triplets) from longitudinal follow-up of 1137 eyes (576 AREDS participants). - Methods - Deep learning models were trained to detect and quantify nuclear sclerosis (NS; scale 0.9-7.1) from 45-degree slit-lamp photographs and cortical lens opacity (CLO; scale 0%-100%) and posterior subcapsular cataract (PSC; scale 0%-100%) from retroillumination photographs. DeepLensNet performance was compared with that of 14 ophthalmologists and 24 medical students. - Main Outcome Measures - Mean squared error (MSE). - Results - On the full test set, mean MSE for DeepLensNet was 0.23 (standard deviation [SD], 0.01) for NS, 13.1 (SD, 1.6) for CLO, and 16.6 (SD, 2.4) for PSC. On a subset of the test set (substantially enriched for positive cases of CLO and PSC), for NS, mean MSE for DeepLensNet was 0.23 (SD, 0.02), compared with 0.98 (SD, 0.24; P = 0.000001) for the ophthalmologists and 1.24 (SD, 0.34; P = 0.000005) for the medical students. For CLO, mean MSE was 53.5 (SD, 14.8), compared with 134.9 (SD, 89.9; P = 0.003) for the ophthalmologists and 433.6 (SD, 962.1; P = 0.0007) for the medical students. For PSC, mean MSE was 171.9 (SD, 38.9), compared with 176.8 (SD, 98.0; P = 0.67) for the ophthalmologists and 398.2 (SD, 645.4; P = 0.18) for the medical students. In external validation on the Singapore Malay Eye Study (sampled to reflect the cataract severity distribution in AREDS), the MSE for DeepSeeNet was 1.27 for NS and 25.5 for PSC. - Conclusions - DeepLensNet performed automated and quantitative classification of cataract severity for all 3 types of age-related cataract. For the 2 most common types (NS and CLO), the accuracy was significantly superior to that of ophthalmologists; for the least common type (PSC), it was similar. DeepLensNet may have wide potential applications in both clinical and research domains. In the future, such approaches may increase the accessibility of cataract assessment globally. The code and models are available at https://github.com/ncbi/deeplensnet. 
650 4 |a Artificial intelligence 
650 4 |a Automated diagnosis 
650 4 |a Cataract 
650 4 |a Cortical cataract 
650 4 |a Deep learning 
650 4 |a Nuclear sclerosis 
650 4 |a Posterior subcapsular cataract 
650 4 |a Severity classification 
650 4 |a Telemedicine 
650 4 |a Teleophthalmology 
700 1 |a Chen, Qingyu  |e VerfasserIn  |4 aut 
700 1 |a Agrón, Elvira  |e VerfasserIn  |4 aut 
700 1 |a Tham, Yih-Chung  |e VerfasserIn  |4 aut 
700 1 |a Goh, Jocelyn Hui Lin  |e VerfasserIn  |4 aut 
700 1 |a Lei, Xiaofeng  |e VerfasserIn  |4 aut 
700 1 |a Ng, Yi Pin  |e VerfasserIn  |4 aut 
700 1 |a Liu, Yong  |e VerfasserIn  |4 aut 
700 1 |a Xu, Xinxing  |e VerfasserIn  |4 aut 
700 1 |a Cheng, Ching-Yu  |e VerfasserIn  |4 aut 
700 1 |a Bikbov, Mukharram M.  |e VerfasserIn  |4 aut 
700 1 |a Jonas, Jost B.  |d 1958-  |e VerfasserIn  |0 (DE-588)1028286732  |0 (DE-627)730536823  |0 (DE-576)37578537X  |4 aut 
700 1 |a Bhandari, Sanjeeb  |e VerfasserIn  |4 aut 
700 1 |a Broadhead, Geoffrey K.  |e VerfasserIn  |4 aut 
700 1 |a Colyer, Marcus H.  |e VerfasserIn  |4 aut 
700 1 |a Corsini, Jonathan  |e VerfasserIn  |4 aut 
700 1 |a Cousineau-Krieger, Chantal  |e VerfasserIn  |4 aut 
700 1 |a Gensheimer, William  |e VerfasserIn  |4 aut 
700 1 |a Grasic, David  |e VerfasserIn  |4 aut 
700 1 |a Lamba, Tania  |e VerfasserIn  |4 aut 
700 1 |a Magone, M. Teresa  |e VerfasserIn  |4 aut 
700 1 |a Maiberger, Michele  |e VerfasserIn  |4 aut 
700 1 |a Oshinsky, Arnold  |e VerfasserIn  |4 aut 
700 1 |a Purt, Boonkit  |e VerfasserIn  |4 aut 
700 1 |a Shin, Soo Y.  |e VerfasserIn  |4 aut 
700 1 |a Thavikulwat, Alisa T.  |e VerfasserIn  |4 aut 
700 1 |a Lu, Zhiyong  |e VerfasserIn  |4 aut 
700 1 |a Chew, Emily Y.  |e VerfasserIn  |4 aut 
773 0 8 |i Enthalten in  |t Ophthalmology  |d Amsterdam [u.a.] : Elsevier, 1978  |g 129(2022), 5 vom: Mai, Seite 571-584  |h Online-Ressource  |w (DE-627)320526941  |w (DE-600)2015287-5  |w (DE-576)121465691  |x 1549-4713  |7 nnas  |a DeepLensNet: Deep learning automated diagnosis and quantitative classification of cataract type and severity 
773 1 8 |g volume:129  |g year:2022  |g number:5  |g month:05  |g pages:571-584  |g extent:14  |a DeepLensNet: Deep learning automated diagnosis and quantitative classification of cataract type and severity 
856 4 0 |u https://doi.org/10.1016/j.ophtha.2021.12.017  |x Verlag  |x Resolving-System  |z kostenfrei  |3 Volltext 
856 4 0 |u https://www.sciencedirect.com/science/article/pii/S0161642021009672  |x Verlag  |z kostenfrei  |3 Volltext 
951 |a AR 
992 |a 20240226 
993 |a Article 
994 |a 2022 
998 |g 1028286732  |a Jonas, Jost B.  |m 1028286732:Jonas, Jost B.  |d 60000  |e 60000PJ1028286732  |k 0/60000/  |p 12 
999 |a KXP-PPN1881562778  |e 4491069581 
BIB |a Y 
SER |a journal 
JSO |a {"recId":"1881562778","id":{"doi":["10.1016/j.ophtha.2021.12.017"],"eki":["1881562778"]},"origin":[{"dateIssuedKey":"2022","dateIssuedDisp":"May 2022"}],"type":{"media":"Online-Ressource","bibl":"article-journal"},"person":[{"given":"Tiarnan D. L.","role":"aut","family":"Keenan","display":"Keenan, Tiarnan D. L."},{"role":"aut","family":"Chen","display":"Chen, Qingyu","given":"Qingyu"},{"display":"Agrón, Elvira","family":"Agrón","role":"aut","given":"Elvira"},{"role":"aut","display":"Tham, Yih-Chung","family":"Tham","given":"Yih-Chung"},{"display":"Goh, Jocelyn Hui Lin","family":"Goh","role":"aut","given":"Jocelyn Hui Lin"},{"family":"Lei","display":"Lei, Xiaofeng","role":"aut","given":"Xiaofeng"},{"display":"Ng, Yi Pin","family":"Ng","role":"aut","given":"Yi Pin"},{"role":"aut","family":"Liu","display":"Liu, Yong","given":"Yong"},{"family":"Xu","display":"Xu, Xinxing","role":"aut","given":"Xinxing"},{"role":"aut","display":"Cheng, Ching-Yu","family":"Cheng","given":"Ching-Yu"},{"role":"aut","family":"Bikbov","display":"Bikbov, Mukharram M.","given":"Mukharram M."},{"display":"Jonas, Jost B.","family":"Jonas","role":"aut","given":"Jost B."},{"role":"aut","family":"Bhandari","display":"Bhandari, Sanjeeb","given":"Sanjeeb"},{"role":"aut","family":"Broadhead","display":"Broadhead, Geoffrey K.","given":"Geoffrey K."},{"given":"Marcus H.","role":"aut","display":"Colyer, Marcus H.","family":"Colyer"},{"display":"Corsini, Jonathan","family":"Corsini","role":"aut","given":"Jonathan"},{"role":"aut","family":"Cousineau-Krieger","display":"Cousineau-Krieger, Chantal","given":"Chantal"},{"role":"aut","family":"Gensheimer","display":"Gensheimer, William","given":"William"},{"given":"David","role":"aut","display":"Grasic, David","family":"Grasic"},{"role":"aut","family":"Lamba","display":"Lamba, Tania","given":"Tania"},{"given":"M. Teresa","role":"aut","display":"Magone, M. Teresa","family":"Magone"},{"given":"Michele","family":"Maiberger","display":"Maiberger, Michele","role":"aut"},{"role":"aut","family":"Oshinsky","display":"Oshinsky, Arnold","given":"Arnold"},{"display":"Purt, Boonkit","family":"Purt","role":"aut","given":"Boonkit"},{"given":"Soo Y.","role":"aut","family":"Shin","display":"Shin, Soo Y."},{"given":"Alisa T.","family":"Thavikulwat","display":"Thavikulwat, Alisa T.","role":"aut"},{"role":"aut","display":"Lu, Zhiyong","family":"Lu","given":"Zhiyong"},{"display":"Chew, Emily Y.","family":"Chew","role":"aut","given":"Emily Y."}],"relHost":[{"part":{"pages":"571-584","volume":"129","text":"129(2022), 5 vom: Mai, Seite 571-584","extent":"14","issue":"5","year":"2022"},"disp":"DeepLensNet: Deep learning automated diagnosis and quantitative classification of cataract type and severityOphthalmology","pubHistory":["85.1978 -"],"corporate":[{"role":"isb","display":"American Academy of Ophthalmology"}],"type":{"media":"Online-Ressource","bibl":"periodical"},"recId":"320526941","note":["Gesehen am 15.01.20"],"physDesc":[{"extent":"Online-Ressource"}],"title":[{"subtitle":"journal of the American Academy of Ophthalmology","title":"Ophthalmology","title_sort":"Ophthalmology"}],"language":["eng"],"origin":[{"dateIssuedDisp":"1978-","dateIssuedKey":"1978","publisherPlace":"Amsterdam [u.a.] ; San Francisco, Calif.","publisher":"Elsevier ; Acad."}],"id":{"issn":["1549-4713"],"eki":["320526941"],"zdb":["2015287-5"]}}],"title":[{"title":"DeepLensNet: Deep learning automated diagnosis and quantitative classification of cataract type and severity","title_sort":"DeepLensNet: Deep learning automated diagnosis and quantitative classification of cataract type and severity"}],"language":["eng"],"physDesc":[{"noteIll":"Illustrationen","extent":"14 S."}],"name":{"displayForm":["Tiarnan D.L. Keenan, Qingyu Chen, Elvira Agrón, Yih-Chung Tham, Jocelyn Hui Lin Goh, Xiaofeng Lei, Yi Pin Ng, Yong Liu, Xinxing Xu, Ching-Yu Cheng, Mukharram M. Bikbov, Jost B. Jonas, Sanjeeb Bhandari, Geoffrey K. Broadhead, Marcus H. Colyer, Jonathan Corsini, Chantal Cousineau-Krieger, William Gensheimer, David Grasic, Tania Lamba, M. Teresa Magone, Michele Maiberger, Arnold Oshinsky, Boonkit Purt, Soo Y. Shin, Alisa T. Thavikulwat, Zhiyong Lu, Emily Y. Chew, for the AREDS Deep Learning Research Group"]},"note":["Online verfügbar: 3 January 2022, Artikelversion: 20 April 2022","AREDS Deep Learning Research Group: Priscilla Ajilore, Alex Akman, Nadim S. Azar, William S. Azar, Bryan Chan, Victor Cox, Amisha D. Dave, Rachna Dhanjal, Mary Donovan, Maureen Farrell, Francisca Finkel, Timothy Goblirsch, Wesley Ha, Christine Hill, Aman Kumar, Kristen Kent, Arielle Lee, Pujan Patel, David Peprah, Emma Piliponis, Evan Selzer, Benjamin Swaby, Stephen Tenney, and Alexander Zeleny","Gesehen am 26.02.2024"]} 
SRT |a KEENANTIARDEEPLENSNE2022