Prediction of disease severity in COPD: a deep learning approach for anomaly-based quantitative assessment of chest CT

To quantify regional manifestations related to COPD as anomalies from a modeled distribution of normal-appearing lung on chest CT using a deep learning (DL) approach, and to assess its potential to predict disease severity.

Saved in:
Bibliographic Details
Main Authors: Almeida, Silvia D. (Author) , Norajitra, Tobias (Author) , Lüth, Carsten T. (Author) , Wald, Tassilo (Author) , Weru, Vivienn (Author) , Nolden, Marco (Author) , Jäger, Paul F. (Author) , Stackelberg, Oyunbileg von (Author) , Heußel, Claus Peter (Author) , Weinheimer, Oliver (Author) , Biederer, Jürgen (Author) , Kauczor, Hans-Ulrich (Author) , Maier-Hein, Klaus H. (Author)
Format: Article (Journal)
Language:English
Published: 2024
In: European radiology
Year: 2024, Volume: 34, Issue: 7, Pages: 4379–4392
ISSN:1432-1084
DOI:10.1007/s00330-023-10540-3
Online Access:Verlag, lizenzpflichtig, Volltext: https://doi.org/10.1007/s00330-023-10540-3
Get full text
Author Notes:Silvia D. Almeida, Tobias Norajitra, Carsten T. Lüth, Tassilo Wald, Vivienn Weru, Marco Nolden, Paul F. Jäger, Oyunbileg von Stackelberg, Claus Peter Heußel, Oliver Weinheimer, Jürgen Biederer, Hans-Ulrich Kauczor and Klaus Maier-Hein
Description
Summary:To quantify regional manifestations related to COPD as anomalies from a modeled distribution of normal-appearing lung on chest CT using a deep learning (DL) approach, and to assess its potential to predict disease severity.
Item Description:Gesehen am 18.03.2024
Physical Description:Online Resource
ISSN:1432-1084
DOI:10.1007/s00330-023-10540-3