Human REM sleep recalibrates neural activity in support of memory formation

The proposed mechanisms of sleep-dependent memory consolidation involve the overnight regulation of neural activity at both synaptic and whole-network levels. Now, there is a lack of in vivo data in humans elucidating if, and how, sleep and its varied stages balance neural activity, and if such reca...

Full description

Saved in:
Bibliographic Details
Main Authors: Lendner, Janna (Author) , Niethard, Niels (Author) , Mander, Bryce A. (Author) , van Schalkwijk, Frank J. (Author) , Schuh-Hofer, Sigrid (Author) , Schmidt, Hannah (Author) , Knight, Robert T. (Author) , Born, Jan (Author) , Walker, Matthew P. (Author) , Lin, Jack J. (Author) , Helfrich, Randolph F. (Author)
Format: Article (Journal)
Language:English
Published: Aug 2023
In: Science advances
Year: 2023, Volume: 9, Issue: 34, Pages: 1-16
ISSN:2375-2548
DOI:10.1126/sciadv.adj1895
Online Access:Verlag, kostenfrei, Volltext: https://doi.org/10.1126/sciadv.adj1895
Verlag, kostenfrei, Volltext: https://www.science.org/doi/10.1126/sciadv.adj1895
Get full text
Author Notes:Janna D. Lendner, Niels Niethard, Bryce A. Mander, Frank J. van Schalkwijk, Sigrid Schuh-Hofer, Hannah Schmidt, Robert T. Knight, Jan Born, Matthew P. Walker, Jack J. Lin, Randolph F. Helfrich
Description
Summary:The proposed mechanisms of sleep-dependent memory consolidation involve the overnight regulation of neural activity at both synaptic and whole-network levels. Now, there is a lack of in vivo data in humans elucidating if, and how, sleep and its varied stages balance neural activity, and if such recalibration benefits memory. We combined electrophysiology with in vivo two-photon calcium imaging in rodents as well as intracranial and scalp electroencephalography (EEG) in humans to reveal a key role for non-oscillatory brain activity during rapid eye movement (REM) sleep to mediate sleep-dependent recalibration of neural population dynamics. The extent of this REM sleep recalibration predicted the success of overnight memory consolidation, expressly the modulation of hippocampal—neocortical activity, favoring remembering rather than forgetting. The findings describe a non-oscillatory mechanism how human REM sleep modulates neural population activity to enhance long-term memory.
Item Description:Online veröffentlicht: 25. August 2023
Gesehen am 02.04.2024
Physical Description:Online Resource
ISSN:2375-2548
DOI:10.1126/sciadv.adj1895