Extracting structured information from unstructured histopathology reports using generative pre-trained transformer 4 (GPT-4)

Deep learning applied to whole-slide histopathology images (WSIs) has the potential to enhance precision oncology and alleviate the workload of experts. However, developing these models necessitates large amounts of data with ground truth labels, which can be both time-consuming and expensive to obt...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Truhn, Daniel (VerfasserIn) , Löffler, Chiara (VerfasserIn) , Mueller-Franzes, Gustav (VerfasserIn) , Nebelung, Sven (VerfasserIn) , Hewitt, Katherine J. (VerfasserIn) , Brandner, Sebastian (VerfasserIn) , Bressem, Keno (VerfasserIn) , Försch, Sebastian (VerfasserIn) , Kather, Jakob Nikolas (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: March 2024
In: The journal of pathology
Year: 2024, Jahrgang: 262, Heft: 3, Pages: 310-319
ISSN:1096-9896
DOI:10.1002/path.6232
Online-Zugang:Verlag, kostenfrei, Volltext: https://doi.org/10.1002/path.6232
Verlag, kostenfrei, Volltext: https://pathsocjournals.onlinelibrary.wiley.com/doi/10.1002/path.6232
Volltext
Verfasserangaben:Daniel Truhn, Chiara M. L. Loeffler, Gustav Mueller-Franzes, Sven Nebelung, Katherine J. Hewitt, Sebastian Brandner, Keno K. Bressem, Sebastian Foersch and Jakob Nikolas Kather

MARC

LEADER 00000caa a2200000 c 4500
001 188527209X
003 DE-627
005 20240703163025.0
007 cr uuu---uuuuu
008 240408s2024 xx |||||o 00| ||eng c
024 7 |a 10.1002/path.6232  |2 doi 
035 |a (DE-627)188527209X 
035 |a (DE-599)KXP188527209X 
035 |a (OCoLC)1443668366 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 33  |2 sdnb 
100 1 |a Truhn, Daniel  |e VerfasserIn  |0 (DE-588)1047348306  |0 (DE-627)778145913  |0 (DE-576)400927314  |4 aut 
245 1 0 |a Extracting structured information from unstructured histopathology reports using generative pre-trained transformer 4 (GPT-4)  |c Daniel Truhn, Chiara M. L. Loeffler, Gustav Mueller-Franzes, Sven Nebelung, Katherine J. Hewitt, Sebastian Brandner, Keno K. Bressem, Sebastian Foersch and Jakob Nikolas Kather 
264 1 |c March 2024 
300 |a 10 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Gesehen am 08.04.2024 
500 |a Online veröffentlicht: 14. Dezember 2023 
520 |a Deep learning applied to whole-slide histopathology images (WSIs) has the potential to enhance precision oncology and alleviate the workload of experts. However, developing these models necessitates large amounts of data with ground truth labels, which can be both time-consuming and expensive to obtain. Pathology reports are typically unstructured or poorly structured texts, and efforts to implement structured reporting templates have been unsuccessful, as these efforts lead to perceived extra workload. In this study, we hypothesised that large language models (LLMs), such as the generative pre-trained transformer 4 (GPT-4), can extract structured data from unstructured plain language reports using a zero-shot approach without requiring any re-training. We tested this hypothesis by utilising GPT-4 to extract information from histopathological reports, focusing on two extensive sets of pathology reports for colorectal cancer and glioblastoma. We found a high concordance between LLM-generated structured data and human-generated structured data. Consequently, LLMs could potentially be employed routinely to extract ground truth data for machine learning from unstructured pathology reports in the future.(c) 2023 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland. 
650 4 |a artificial intelligence 
650 4 |a large language models 
650 4 |a named entity recognition 
650 4 |a natural language processing 
650 4 |a pathology report 
650 4 |a text mining 
700 1 |a Löffler, Chiara  |e VerfasserIn  |0 (DE-588)1254183493  |0 (DE-627)1796796646  |4 aut 
700 1 |a Mueller-Franzes, Gustav  |e VerfasserIn  |4 aut 
700 1 |a Nebelung, Sven  |d 1986-  |e VerfasserIn  |0 (DE-588)1029969981  |0 (DE-627)734545851  |0 (DE-576)377792241  |4 aut 
700 1 |a Hewitt, Katherine J.  |e VerfasserIn  |4 aut 
700 1 |a Brandner, Sebastian  |d 1981-  |e VerfasserIn  |0 (DE-588)139873228  |0 (DE-627)61381472X  |0 (DE-576)313613613  |4 aut 
700 1 |a Bressem, Keno  |e VerfasserIn  |0 (DE-588)1188764799  |0 (DE-627)1667689347  |4 aut 
700 1 |a Försch, Sebastian  |d 1985-  |e VerfasserIn  |0 (DE-588)1018553894  |0 (DE-627)682860832  |0 (DE-576)356024814  |4 aut 
700 1 |a Kather, Jakob Nikolas  |d 1989-  |e VerfasserIn  |0 (DE-588)1064064914  |0 (DE-627)812897587  |0 (DE-576)423589091  |4 aut 
773 0 8 |i Enthalten in  |t The journal of pathology  |d Bognor Regis [u.a.] : Wiley, 1892  |g 262(2024), 3 vom: März, Seite 310-319  |h Online-Ressource  |w (DE-627)269536957  |w (DE-600)1475280-3  |w (DE-576)078590132  |x 1096-9896  |7 nnas  |a Extracting structured information from unstructured histopathology reports using generative pre-trained transformer 4 (GPT-4) 
773 1 8 |g volume:262  |g year:2024  |g number:3  |g month:03  |g pages:310-319  |g extent:10  |a Extracting structured information from unstructured histopathology reports using generative pre-trained transformer 4 (GPT-4) 
856 4 0 |u https://doi.org/10.1002/path.6232  |x Verlag  |x Resolving-System  |z kostenfrei  |3 Volltext 
856 4 0 |u https://pathsocjournals.onlinelibrary.wiley.com/doi/10.1002/path.6232  |x Verlag  |z kostenfrei  |3 Volltext 
951 |a AR 
992 |a 20240408 
993 |a Article 
994 |a 2023 
998 |g 1064064914  |a Kather, Jakob Nikolas  |m 1064064914:Kather, Jakob Nikolas  |d 910000  |d 910100  |e 910000PK1064064914  |e 910100PK1064064914  |k 0/910000/  |k 1/910000/910100/  |p 9  |y j 
999 |a KXP-PPN188527209X  |e 4508520359 
BIB |a Y 
SER |a journal 
JSO |a {"recId":"188527209X","physDesc":[{"extent":"10 S."}],"title":[{"title":"Extracting structured information from unstructured histopathology reports using generative pre-trained transformer 4 (GPT-4)","title_sort":"Extracting structured information from unstructured histopathology reports using generative pre-trained transformer 4 (GPT-4)"}],"type":{"bibl":"article-journal","media":"Online-Ressource"},"language":["eng"],"note":["Gesehen am 08.04.2024","Online veröffentlicht: 14. Dezember 2023"],"origin":[{"dateIssuedDisp":"March 2024","dateIssuedKey":"2024"}],"relHost":[{"id":{"doi":["10.1002/(ISSN)1096-9896"],"zdb":["1475280-3"],"issn":["1096-9896"],"eki":["269536957"]},"part":{"volume":"262","year":"2024","issue":"3","extent":"10","text":"262(2024), 3 vom: März, Seite 310-319","pages":"310-319"},"corporate":[{"role":"isb","display":"Pathological Society of Great Britain and Ireland"}],"pubHistory":["1.1892 -"],"disp":"Extracting structured information from unstructured histopathology reports using generative pre-trained transformer 4 (GPT-4)The journal of pathology","physDesc":[{"extent":"Online-Ressource"}],"recId":"269536957","type":{"media":"Online-Ressource","bibl":"periodical"},"language":["eng"],"note":["Gesehen am 28.02.08"],"title":[{"title":"The journal of pathology","title_sort":"journal of pathology","subtitle":"an official journal of the Pathological Society of Great Britain and Ireland"}],"origin":[{"publisher":"Wiley","dateIssuedKey":"1892","dateIssuedDisp":"1892-","publisherPlace":"Bognor Regis [u.a.]"}]}],"person":[{"display":"Truhn, Daniel","family":"Truhn","role":"aut","given":"Daniel"},{"family":"Löffler","role":"aut","given":"Chiara","display":"Löffler, Chiara"},{"role":"aut","given":"Gustav","family":"Mueller-Franzes","display":"Mueller-Franzes, Gustav"},{"display":"Nebelung, Sven","family":"Nebelung","role":"aut","given":"Sven"},{"role":"aut","given":"Katherine J.","family":"Hewitt","display":"Hewitt, Katherine J."},{"family":"Brandner","given":"Sebastian","role":"aut","display":"Brandner, Sebastian"},{"display":"Bressem, Keno","role":"aut","given":"Keno","family":"Bressem"},{"display":"Försch, Sebastian","family":"Försch","role":"aut","given":"Sebastian"},{"display":"Kather, Jakob Nikolas","role":"aut","given":"Jakob Nikolas","family":"Kather"}],"id":{"eki":["188527209X"],"doi":["10.1002/path.6232"]},"name":{"displayForm":["Daniel Truhn, Chiara M. L. Loeffler, Gustav Mueller-Franzes, Sven Nebelung, Katherine J. Hewitt, Sebastian Brandner, Keno K. Bressem, Sebastian Foersch and Jakob Nikolas Kather"]}} 
SRT |a TRUHNDANIEEXTRACTING2024