Electronic properties of tetraazaperopyrene derivatives on Au(111): energy-level alignment and interfacial band formation [research data]
N-heteropolycyclic aromatic compounds are promising organic electron-transporting semiconductors for applications in field-effect transistors. Here, we investigated the electronic properties of 1,3,8,10-tetraazaperopyrene derivatives adsorbed on Au(111) using a complementary experimental approach, n...
Saved in:
| Main Authors: | , , , , , , , , , , , |
|---|---|
| Format: | Database Research Data |
| Language: | English |
| Published: |
Heidelberg
Universität
2024-04-16
|
| DOI: | 10.11588/data/0EK2MB |
| Subjects: | |
| Online Access: | Resolving-System, kostenfrei, Volltext: https://doi.org/10.11588/data/0EK2MB Verlag, kostenfrei, Volltext: https://heidata.uni-heidelberg.de/dataset.xhtml?persistentId=doi:10.11588/data/0EK2MB |
| Author Notes: | Arnulf Stein, Daniela Rolf, Christina Lotze, Sascha Feldmann, David Gerbert, Benjamin Günther, Andreas Jeindl, Johannes J. Cartus, Oliver Hofmann, Lutz H. Gade, Kahtarina J. Franke, Petra Tegeder |
| Summary: | N-heteropolycyclic aromatic compounds are promising organic electron-transporting semiconductors for applications in field-effect transistors. Here, we investigated the electronic properties of 1,3,8,10-tetraazaperopyrene derivatives adsorbed on Au(111) using a complementary experimental approach, namely, scanning tunneling spectroscopy and two-photon photoemission combined with state-of-the-art density functional theory. We find signatures of weak physisorption of the molecular layers, such as the absence of charge transfer, a nearly unperturbed surface state, and an intact herringbone reconstruction underneath the molecular layer. Interestingly, molecular states in the energy region of the sp- and d-bands of the Au(111) substrate exhibit hole-like dispersive character. We ascribe this band character to hybridization with the delocalized states of the substrate. We suggest that such bands, which leave the molecular frontier orbitals largely unperturbed, are a promising lead for the design of organic–metal interfaces with a low charge injection barrier. |
|---|---|
| Item Description: | Gefördert durch: Deutsche Forschungsgemeinschaft: 281029004 (SFB 1249, Projects A02 and B06); Deutsche Forschungsgemeinschaft: 182087777 (SFB 951) (K.J.F.); International Max Planck Research School “Functional Interfaces in Physics and Chemistry” (D.R.); Austrian Science Fund (FWF): Y1157-N36 “MAP-DESIGN” Gesehen am 16.04.2024 |
| Physical Description: | Online Resource |
| DOI: | 10.11588/data/0EK2MB |