Persistent homology for functionals

We introduce topological conditions on a broad class of functionals that ensure that the persistent homology modules of their associated sublevel set filtration admit persistence diagrams, which, in particular, implies that they satisfy generalized Morse inequalities. We illustrate the applicability...

Full description

Saved in:
Bibliographic Details
Main Authors: Bauer, Ulrich (Author) , Medina-Mardones, Anibal M. (Author) , Schmahl, Maximilian (Author)
Format: Article (Journal)
Language:English
Published: 30 December 2023
In: Communications in contemporary mathematics
Year: 2023, Volume: 25
ISSN:0219-1997
DOI:10.1142/S0219199723500554
Online Access:Verlag, lizenzpflichtig, Volltext: https://doi.org/10.1142/S0219199723500554
Verlag, lizenzpflichtig, Volltext: https://www.worldscientific.com/doi/10.1142/S0219199723500554
Get full text
Author Notes:Ulrich Bauer, Anibal M. Medina-Mardones, and Maximilian Schmahl
Description
Summary:We introduce topological conditions on a broad class of functionals that ensure that the persistent homology modules of their associated sublevel set filtration admit persistence diagrams, which, in particular, implies that they satisfy generalized Morse inequalities. We illustrate the applicability of these results by recasting the original proof of the Unstable Minimal Surface Theorem given by Morse and Tompkins in a modern and rigorous framework.
Item Description:Gesehen am 13.05.2024
Physical Description:Online Resource
ISSN:0219-1997
DOI:10.1142/S0219199723500554