Persistent homology for functionals
We introduce topological conditions on a broad class of functionals that ensure that the persistent homology modules of their associated sublevel set filtration admit persistence diagrams, which, in particular, implies that they satisfy generalized Morse inequalities. We illustrate the applicability...
Gespeichert in:
| Hauptverfasser: | , , |
|---|---|
| Dokumenttyp: | Article (Journal) |
| Sprache: | Englisch |
| Veröffentlicht: |
30 December 2023
|
| In: |
Communications in contemporary mathematics
Year: 2023, Jahrgang: 25 |
| ISSN: | 0219-1997 |
| DOI: | 10.1142/S0219199723500554 |
| Online-Zugang: | Verlag, lizenzpflichtig, Volltext: https://doi.org/10.1142/S0219199723500554 Verlag, lizenzpflichtig, Volltext: https://www.worldscientific.com/doi/10.1142/S0219199723500554 |
| Verfasserangaben: | Ulrich Bauer, Anibal M. Medina-Mardones, and Maximilian Schmahl |
MARC
| LEADER | 00000caa a22000002c 4500 | ||
|---|---|---|---|
| 001 | 1888410558 | ||
| 003 | DE-627 | ||
| 005 | 20240703175227.0 | ||
| 007 | cr uuu---uuuuu | ||
| 008 | 240513s2023 xx |||||o 00| ||eng c | ||
| 024 | 7 | |a 10.1142/S0219199723500554 |2 doi | |
| 035 | |a (DE-627)1888410558 | ||
| 035 | |a (DE-599)KXP1888410558 | ||
| 035 | |a (OCoLC)1443678427 | ||
| 040 | |a DE-627 |b ger |c DE-627 |e rda | ||
| 041 | |a eng | ||
| 084 | |a 27 |2 sdnb | ||
| 100 | 1 | |a Bauer, Ulrich |e VerfasserIn |0 (DE-588)1068591951 |0 (DE-627)820495727 |0 (DE-576)427905591 |4 aut | |
| 245 | 1 | 0 | |a Persistent homology for functionals |c Ulrich Bauer, Anibal M. Medina-Mardones, and Maximilian Schmahl |
| 264 | 1 | |c 30 December 2023 | |
| 336 | |a Text |b txt |2 rdacontent | ||
| 337 | |a Computermedien |b c |2 rdamedia | ||
| 338 | |a Online-Ressource |b cr |2 rdacarrier | ||
| 500 | |a Gesehen am 13.05.2024 | ||
| 520 | |a We introduce topological conditions on a broad class of functionals that ensure that the persistent homology modules of their associated sublevel set filtration admit persistence diagrams, which, in particular, implies that they satisfy generalized Morse inequalities. We illustrate the applicability of these results by recasting the original proof of the Unstable Minimal Surface Theorem given by Morse and Tompkins in a modern and rigorous framework. | ||
| 650 | 4 | |a barcode | |
| 650 | 4 | |a calculus of variations | |
| 650 | 4 | |a local connectedness | |
| 650 | 4 | |a minimal surface | |
| 650 | 4 | |a Morse inequalities | |
| 650 | 4 | |a Morse theory | |
| 650 | 4 | |a persistent diagram | |
| 650 | 4 | |a Persistent homology | |
| 650 | 4 | |a q-tameness | |
| 700 | 1 | |a Medina-Mardones, Anibal M. |e VerfasserIn |0 (DE-588)1329182006 |0 (DE-627)1888411740 |4 aut | |
| 700 | 1 | |a Schmahl, Maximilian |d 1995- |e VerfasserIn |0 (DE-588)1269611313 |0 (DE-627)1818115190 |4 aut | |
| 773 | 0 | 8 | |i Enthalten in |t Communications in contemporary mathematics |d Singapore [u.a.] : World Scientific, 1999 |g 25(2023), Artikel-ID 2350055 |h Online-Ressource |w (DE-627)323941001 |w (DE-600)2028769-0 |w (DE-576)11131576X |x 0219-1997 |7 nnas |a Persistent homology for functionals |
| 773 | 1 | 8 | |g volume:25 |g year:2023 |g elocationid:2350055 |a Persistent homology for functionals |
| 856 | 4 | 0 | |u https://doi.org/10.1142/S0219199723500554 |x Verlag |x Resolving-System |z lizenzpflichtig |3 Volltext |
| 856 | 4 | 0 | |u https://www.worldscientific.com/doi/10.1142/S0219199723500554 |x Verlag |z lizenzpflichtig |3 Volltext |
| 951 | |a AR | ||
| 992 | |a 20240513 | ||
| 993 | |a Article | ||
| 994 | |a 2023 | ||
| 998 | |g 1269611313 |a Schmahl, Maximilian |m 1269611313:Schmahl, Maximilian |d 110000 |d 110400 |d 700000 |d 728500 |e 110000PS1269611313 |e 110400PS1269611313 |e 700000PS1269611313 |e 728500PS1269611313 |k 0/110000/ |k 1/110000/110400/ |k 0/700000/ |k 1/700000/728500/ |p 3 |y j | ||
| 999 | |a KXP-PPN1888410558 |e 4522322054 | ||
| BIB | |a Y | ||
| SER | |a journal | ||
| JSO | |a {"person":[{"display":"Bauer, Ulrich","role":"aut","family":"Bauer","given":"Ulrich"},{"family":"Medina-Mardones","given":"Anibal M.","display":"Medina-Mardones, Anibal M.","role":"aut"},{"family":"Schmahl","given":"Maximilian","display":"Schmahl, Maximilian","role":"aut"}],"title":[{"title":"Persistent homology for functionals","title_sort":"Persistent homology for functionals"}],"relHost":[{"title":[{"subtitle":"CCM","title_sort":"Communications in contemporary mathematics","title":"Communications in contemporary mathematics"}],"part":{"text":"25(2023), Artikel-ID 2350055","year":"2023","volume":"25"},"disp":"Persistent homology for functionalsCommunications in contemporary mathematics","language":["eng"],"titleAlt":[{"title":"CCM"}],"type":{"media":"Online-Ressource","bibl":"periodical"},"physDesc":[{"extent":"Online-Ressource"}],"origin":[{"dateIssuedKey":"1999","publisherPlace":"Singapore [u.a.]","publisher":"World Scientific","dateIssuedDisp":"1999-"}],"id":{"zdb":["2028769-0"],"eki":["323941001"],"issn":["0219-1997"]},"pubHistory":["1.1999 -"],"recId":"323941001"}],"note":["Gesehen am 13.05.2024"],"origin":[{"dateIssuedKey":"2023","dateIssuedDisp":"30 December 2023"}],"id":{"doi":["10.1142/S0219199723500554"],"eki":["1888410558"]},"language":["eng"],"name":{"displayForm":["Ulrich Bauer, Anibal M. Medina-Mardones, and Maximilian Schmahl"]},"type":{"bibl":"article-journal","media":"Online-Ressource"},"recId":"1888410558"} | ||
| SRT | |a BAUERULRICPERSISTENT3020 | ||