Persistent homology for functionals

We introduce topological conditions on a broad class of functionals that ensure that the persistent homology modules of their associated sublevel set filtration admit persistence diagrams, which, in particular, implies that they satisfy generalized Morse inequalities. We illustrate the applicability...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Bauer, Ulrich (VerfasserIn) , Medina-Mardones, Anibal M. (VerfasserIn) , Schmahl, Maximilian (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: 30 December 2023
In: Communications in contemporary mathematics
Year: 2023, Jahrgang: 25
ISSN:0219-1997
DOI:10.1142/S0219199723500554
Online-Zugang:Verlag, lizenzpflichtig, Volltext: https://doi.org/10.1142/S0219199723500554
Verlag, lizenzpflichtig, Volltext: https://www.worldscientific.com/doi/10.1142/S0219199723500554
Volltext
Verfasserangaben:Ulrich Bauer, Anibal M. Medina-Mardones, and Maximilian Schmahl

MARC

LEADER 00000caa a22000002c 4500
001 1888410558
003 DE-627
005 20240703175227.0
007 cr uuu---uuuuu
008 240513s2023 xx |||||o 00| ||eng c
024 7 |a 10.1142/S0219199723500554  |2 doi 
035 |a (DE-627)1888410558 
035 |a (DE-599)KXP1888410558 
035 |a (OCoLC)1443678427 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 27  |2 sdnb 
100 1 |a Bauer, Ulrich  |e VerfasserIn  |0 (DE-588)1068591951  |0 (DE-627)820495727  |0 (DE-576)427905591  |4 aut 
245 1 0 |a Persistent homology for functionals  |c Ulrich Bauer, Anibal M. Medina-Mardones, and Maximilian Schmahl 
264 1 |c 30 December 2023 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Gesehen am 13.05.2024 
520 |a We introduce topological conditions on a broad class of functionals that ensure that the persistent homology modules of their associated sublevel set filtration admit persistence diagrams, which, in particular, implies that they satisfy generalized Morse inequalities. We illustrate the applicability of these results by recasting the original proof of the Unstable Minimal Surface Theorem given by Morse and Tompkins in a modern and rigorous framework. 
650 4 |a barcode 
650 4 |a calculus of variations 
650 4 |a local connectedness 
650 4 |a minimal surface 
650 4 |a Morse inequalities 
650 4 |a Morse theory 
650 4 |a persistent diagram 
650 4 |a Persistent homology 
650 4 |a q-tameness 
700 1 |a Medina-Mardones, Anibal M.  |e VerfasserIn  |0 (DE-588)1329182006  |0 (DE-627)1888411740  |4 aut 
700 1 |a Schmahl, Maximilian  |d 1995-  |e VerfasserIn  |0 (DE-588)1269611313  |0 (DE-627)1818115190  |4 aut 
773 0 8 |i Enthalten in  |t Communications in contemporary mathematics  |d Singapore [u.a.] : World Scientific, 1999  |g 25(2023), Artikel-ID 2350055  |h Online-Ressource  |w (DE-627)323941001  |w (DE-600)2028769-0  |w (DE-576)11131576X  |x 0219-1997  |7 nnas  |a Persistent homology for functionals 
773 1 8 |g volume:25  |g year:2023  |g elocationid:2350055  |a Persistent homology for functionals 
856 4 0 |u https://doi.org/10.1142/S0219199723500554  |x Verlag  |x Resolving-System  |z lizenzpflichtig  |3 Volltext 
856 4 0 |u https://www.worldscientific.com/doi/10.1142/S0219199723500554  |x Verlag  |z lizenzpflichtig  |3 Volltext 
951 |a AR 
992 |a 20240513 
993 |a Article 
994 |a 2023 
998 |g 1269611313  |a Schmahl, Maximilian  |m 1269611313:Schmahl, Maximilian  |d 110000  |d 110400  |d 700000  |d 728500  |e 110000PS1269611313  |e 110400PS1269611313  |e 700000PS1269611313  |e 728500PS1269611313  |k 0/110000/  |k 1/110000/110400/  |k 0/700000/  |k 1/700000/728500/  |p 3  |y j 
999 |a KXP-PPN1888410558  |e 4522322054 
BIB |a Y 
SER |a journal 
JSO |a {"person":[{"display":"Bauer, Ulrich","role":"aut","family":"Bauer","given":"Ulrich"},{"family":"Medina-Mardones","given":"Anibal M.","display":"Medina-Mardones, Anibal M.","role":"aut"},{"family":"Schmahl","given":"Maximilian","display":"Schmahl, Maximilian","role":"aut"}],"title":[{"title":"Persistent homology for functionals","title_sort":"Persistent homology for functionals"}],"relHost":[{"title":[{"subtitle":"CCM","title_sort":"Communications in contemporary mathematics","title":"Communications in contemporary mathematics"}],"part":{"text":"25(2023), Artikel-ID 2350055","year":"2023","volume":"25"},"disp":"Persistent homology for functionalsCommunications in contemporary mathematics","language":["eng"],"titleAlt":[{"title":"CCM"}],"type":{"media":"Online-Ressource","bibl":"periodical"},"physDesc":[{"extent":"Online-Ressource"}],"origin":[{"dateIssuedKey":"1999","publisherPlace":"Singapore [u.a.]","publisher":"World Scientific","dateIssuedDisp":"1999-"}],"id":{"zdb":["2028769-0"],"eki":["323941001"],"issn":["0219-1997"]},"pubHistory":["1.1999 -"],"recId":"323941001"}],"note":["Gesehen am 13.05.2024"],"origin":[{"dateIssuedKey":"2023","dateIssuedDisp":"30 December 2023"}],"id":{"doi":["10.1142/S0219199723500554"],"eki":["1888410558"]},"language":["eng"],"name":{"displayForm":["Ulrich Bauer, Anibal M. Medina-Mardones, and Maximilian Schmahl"]},"type":{"bibl":"article-journal","media":"Online-Ressource"},"recId":"1888410558"} 
SRT |a BAUERULRICPERSISTENT3020