Back to the formula - LHC edition

While neural networks offer an attractive way to numerically encode functions, actual formulas remain the language of theoretical particle physics. We use symbolic regression trained on matrix-element information to extract, for instance, optimal LHC observables. This way we invert the usual simulat...

Full description

Saved in:
Bibliographic Details
Main Authors: Butter, Anja (Author) , Plehn, Tilman (Author) , Soybelman, Nathalie (Author) , Brehmer, Johann (Author)
Format: Article (Journal)
Language:English
Published: 29-01-2024
In: SciPost physics
Year: 2024, Volume: 16, Issue: 1, Pages: 1-28
ISSN:2542-4653
DOI:10.21468/SciPostPhys.16.1.037
Online Access:Verlag, lizenzpflichtig, Volltext: https://doi.org/10.21468/SciPostPhys.16.1.037
Verlag, lizenzpflichtig, Volltext: https://scipost.org/10.21468/SciPostPhys.16.1.037
Get full text
Author Notes:Anja Butter, Tilman Plehn, Nathalie Soybelman and Johann Brehmer
Description
Summary:While neural networks offer an attractive way to numerically encode functions, actual formulas remain the language of theoretical particle physics. We use symbolic regression trained on matrix-element information to extract, for instance, optimal LHC observables. This way we invert the usual simulation paradigm and extract easily interpretable formulas from complex simulated data. We introduce the method using the effect of a dimension-6 coefficient on associated ZH production. We then validate it for the known case of CP-violation in weak-boson-fusion Higgs production, including detector effects.
Item Description:Gesehen am 07.06.2024
Physical Description:Online Resource
ISSN:2542-4653
DOI:10.21468/SciPostPhys.16.1.037