Back to the formula - LHC edition
While neural networks offer an attractive way to numerically encode functions, actual formulas remain the language of theoretical particle physics. We use symbolic regression trained on matrix-element information to extract, for instance, optimal LHC observables. This way we invert the usual simulat...
Saved in:
| Main Authors: | , , , |
|---|---|
| Format: | Article (Journal) |
| Language: | English |
| Published: |
29-01-2024
|
| In: |
SciPost physics
Year: 2024, Volume: 16, Issue: 1, Pages: 1-28 |
| ISSN: | 2542-4653 |
| DOI: | 10.21468/SciPostPhys.16.1.037 |
| Online Access: | Verlag, lizenzpflichtig, Volltext: https://doi.org/10.21468/SciPostPhys.16.1.037 Verlag, lizenzpflichtig, Volltext: https://scipost.org/10.21468/SciPostPhys.16.1.037 |
| Author Notes: | Anja Butter, Tilman Plehn, Nathalie Soybelman and Johann Brehmer |
Search Result 1