Performance variability of radiomics machine learning models for the detection of clinically significant prostate cancer in heterogeneous MRI datasets
Performance variability of radiomics machine learning models for the detection of clinically significant prostate cancer in heterogeneous MRI datasets
Saved in:
| Main Authors: | , , , , , , , , , , , , |
|---|---|
| Format: | Article (Journal) |
| Language: | English |
| Published: |
November 01, 2022
|
| In: |
Quantitative imaging in medicine and surgery
Year: 2022, Volume: 12, Issue: 11, Pages: 4991-5003 |
| ISSN: | 2223-4306 |
| DOI: | 10.21037/qims-22-265 |
| Online Access: | Verlag, lizenzpflichtig, Volltext: https://doi.org/10.21037/qims-22-265 Verlag, lizenzpflichtig, Volltext: https://qims.amegroups.org/article/view/101324 |
| Author Notes: | Eva Gresser, Balthasar Schachtner, Anna Theresa Stüber, Olga Solyanik, Andrea Schreier, Thomas Huber, Matthias Frank Froelich, Giuseppe Magistro, Alexander Kretschmer, Christian Stief, Jens Ricke, Michael Ingrisch, Dominik Nörenberg |
| Summary: | Performance variability of radiomics machine learning models for the detection of clinically significant prostate cancer in heterogeneous MRI datasets |
|---|---|
| Item Description: | Gesehen am 24.06.2024 |
| Physical Description: | Online Resource |
| ISSN: | 2223-4306 |
| DOI: | 10.21037/qims-22-265 |