Performance variability of radiomics machine learning models for the detection of clinically significant prostate cancer in heterogeneous MRI datasets

Performance variability of radiomics machine learning models for the detection of clinically significant prostate cancer in heterogeneous MRI datasets

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Gresser, Eva Kristina (VerfasserIn) , Schachtner, Balthasar (VerfasserIn) , Stüber, Anna Theresa (VerfasserIn) , Solyanik, Olga (VerfasserIn) , Schreier, Andrea (VerfasserIn) , Huber, Thomas (VerfasserIn) , Froelich, Matthias F. (VerfasserIn) , Magistro, Giuseppe (VerfasserIn) , Kretschmer, Alexander (VerfasserIn) , Stief, Christian (VerfasserIn) , Ricke, Jens (VerfasserIn) , Ingrisch, Michael (VerfasserIn) , Nörenberg, Dominik (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: November 01, 2022
In: Quantitative imaging in medicine and surgery
Year: 2022, Jahrgang: 12, Heft: 11, Pages: 4991-5003
ISSN:2223-4306
DOI:10.21037/qims-22-265
Online-Zugang:Verlag, lizenzpflichtig, Volltext: https://doi.org/10.21037/qims-22-265
Verlag, lizenzpflichtig, Volltext: https://qims.amegroups.org/article/view/101324
Volltext
Verfasserangaben:Eva Gresser, Balthasar Schachtner, Anna Theresa Stüber, Olga Solyanik, Andrea Schreier, Thomas Huber, Matthias Frank Froelich, Giuseppe Magistro, Alexander Kretschmer, Christian Stief, Jens Ricke, Michael Ingrisch, Dominik Nörenberg

MARC

LEADER 00000caa a2200000 c 4500
001 1892112000
003 DE-627
005 20241205144007.0
007 cr uuu---uuuuu
008 240624s2022 xx |||||o 00| ||eng c
024 7 |a 10.21037/qims-22-265  |2 doi 
035 |a (DE-627)1892112000 
035 |a (DE-599)KXP1892112000 
035 |a (OCoLC)1475300592 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 33  |2 sdnb 
100 1 |a Gresser, Eva Kristina  |d 1988-  |e VerfasserIn  |0 (DE-588)1190833689  |0 (DE-627)1669407772  |4 aut 
245 1 0 |a Performance variability of radiomics machine learning models for the detection of clinically significant prostate cancer in heterogeneous MRI datasets  |c Eva Gresser, Balthasar Schachtner, Anna Theresa Stüber, Olga Solyanik, Andrea Schreier, Thomas Huber, Matthias Frank Froelich, Giuseppe Magistro, Alexander Kretschmer, Christian Stief, Jens Ricke, Michael Ingrisch, Dominik Nörenberg 
264 1 |c November 01, 2022 
300 |a 14 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Gesehen am 24.06.2024 
520 |a Performance variability of radiomics machine learning models for the detection of clinically significant prostate cancer in heterogeneous MRI datasets 
700 1 |a Schachtner, Balthasar  |e VerfasserIn  |4 aut 
700 1 |a Stüber, Anna Theresa  |e VerfasserIn  |4 aut 
700 1 |a Solyanik, Olga  |e VerfasserIn  |4 aut 
700 1 |a Schreier, Andrea  |e VerfasserIn  |4 aut 
700 1 |a Huber, Thomas  |d 1986-  |e VerfasserIn  |0 (DE-588)1217354859  |0 (DE-627)1729178677  |4 aut 
700 1 |a Froelich, Matthias F.  |d 1991-  |e VerfasserIn  |0 (DE-588)1170833756  |0 (DE-627)1040131557  |0 (DE-576)512678359  |4 aut 
700 1 |a Magistro, Giuseppe  |e VerfasserIn  |4 aut 
700 1 |a Kretschmer, Alexander  |e VerfasserIn  |4 aut 
700 1 |a Stief, Christian  |e VerfasserIn  |4 aut 
700 1 |a Ricke, Jens  |e VerfasserIn  |4 aut 
700 1 |a Ingrisch, Michael  |e VerfasserIn  |4 aut 
700 1 |a Nörenberg, Dominik  |e VerfasserIn  |0 (DE-588)1064719996  |0 (DE-627)814432123  |0 (DE-576)424084228  |4 aut 
773 0 8 |i Enthalten in  |t Quantitative imaging in medicine and surgery  |d Hong Kong : AME Publ., 2011  |g 12(2022), 11 vom: Nov., Seite 4991-5003  |h Online-Ressource  |w (DE-627)688082777  |w (DE-600)2653586-5  |w (DE-576)360558267  |x 2223-4306  |7 nnas  |a Performance variability of radiomics machine learning models for the detection of clinically significant prostate cancer in heterogeneous MRI datasets 
773 1 8 |g volume:12  |g year:2022  |g number:11  |g month:11  |g pages:4991-5003  |g extent:14  |a Performance variability of radiomics machine learning models for the detection of clinically significant prostate cancer in heterogeneous MRI datasets 
856 4 0 |u https://doi.org/10.21037/qims-22-265  |x Verlag  |x Resolving-System  |z lizenzpflichtig  |3 Volltext 
856 4 0 |u https://qims.amegroups.org/article/view/101324  |x Verlag  |z lizenzpflichtig  |3 Volltext 
951 |a AR 
992 |a 20240624 
993 |a Article 
994 |a 2022 
998 |g 1064719996  |a Nörenberg, Dominik  |m 1064719996:Nörenberg, Dominik  |d 60000  |d 62900  |e 60000PN1064719996  |e 62900PN1064719996  |k 0/60000/  |k 1/60000/62900/  |p 13  |y j 
998 |g 1170833756  |a Froelich, Matthias F.  |m 1170833756:Froelich, Matthias F.  |d 60000  |d 62900  |e 60000PF1170833756  |e 62900PF1170833756  |k 0/60000/  |k 1/60000/62900/  |p 7 
998 |g 1217354859  |a Huber, Thomas  |m 1217354859:Huber, Thomas  |d 60000  |d 62900  |e 60000PH1217354859  |e 62900PH1217354859  |k 0/60000/  |k 1/60000/62900/  |p 6 
999 |a KXP-PPN1892112000  |e 4541439123 
BIB |a Y 
SER |a journal 
JSO |a {"note":["Gesehen am 24.06.2024"],"id":{"eki":["1892112000"],"doi":["10.21037/qims-22-265"]},"title":[{"title_sort":"Performance variability of radiomics machine learning models for the detection of clinically significant prostate cancer in heterogeneous MRI datasets","title":"Performance variability of radiomics machine learning models for the detection of clinically significant prostate cancer in heterogeneous MRI datasets"}],"recId":"1892112000","language":["eng"],"origin":[{"dateIssuedDisp":"November 01, 2022","dateIssuedKey":"2022"}],"type":{"media":"Online-Ressource","bibl":"article-journal"},"relHost":[{"type":{"bibl":"periodical","media":"Online-Ressource"},"origin":[{"dateIssuedDisp":"2011-","publisherPlace":"Hong Kong","dateIssuedKey":"2011","publisher":"AME Publ."}],"language":["eng"],"physDesc":[{"extent":"Online-Ressource"}],"part":{"pages":"4991-5003","extent":"14","year":"2022","issue":"11","volume":"12","text":"12(2022), 11 vom: Nov., Seite 4991-5003"},"id":{"issn":["2223-4306"],"zdb":["2653586-5"],"eki":["688082777"]},"title":[{"title_sort":"Quantitative imaging in medicine and surgery","title":"Quantitative imaging in medicine and surgery","subtitle":"QUIMS"}],"disp":"Performance variability of radiomics machine learning models for the detection of clinically significant prostate cancer in heterogeneous MRI datasetsQuantitative imaging in medicine and surgery","note":["Gesehen am 13.08.20"],"recId":"688082777","titleAlt":[{"title":"QUIMS"}],"pubHistory":["1.2011 -"]}],"person":[{"given":"Eva Kristina","role":"aut","display":"Gresser, Eva Kristina","family":"Gresser","roleDisplay":"VerfasserIn"},{"roleDisplay":"VerfasserIn","family":"Schachtner","display":"Schachtner, Balthasar","role":"aut","given":"Balthasar"},{"roleDisplay":"VerfasserIn","family":"Stüber","given":"Anna Theresa","role":"aut","display":"Stüber, Anna Theresa"},{"display":"Solyanik, Olga","role":"aut","given":"Olga","family":"Solyanik","roleDisplay":"VerfasserIn"},{"given":"Andrea","display":"Schreier, Andrea","role":"aut","roleDisplay":"VerfasserIn","family":"Schreier"},{"given":"Thomas","display":"Huber, Thomas","role":"aut","roleDisplay":"VerfasserIn","family":"Huber"},{"role":"aut","display":"Froelich, Matthias F.","given":"Matthias F.","family":"Froelich","roleDisplay":"VerfasserIn"},{"roleDisplay":"VerfasserIn","family":"Magistro","given":"Giuseppe","display":"Magistro, Giuseppe","role":"aut"},{"display":"Kretschmer, Alexander","role":"aut","given":"Alexander","family":"Kretschmer","roleDisplay":"VerfasserIn"},{"given":"Christian","display":"Stief, Christian","role":"aut","roleDisplay":"VerfasserIn","family":"Stief"},{"role":"aut","display":"Ricke, Jens","given":"Jens","family":"Ricke","roleDisplay":"VerfasserIn"},{"family":"Ingrisch","roleDisplay":"VerfasserIn","given":"Michael","display":"Ingrisch, Michael","role":"aut"},{"role":"aut","display":"Nörenberg, Dominik","given":"Dominik","family":"Nörenberg","roleDisplay":"VerfasserIn"}],"physDesc":[{"extent":"14 S."}],"name":{"displayForm":["Eva Gresser, Balthasar Schachtner, Anna Theresa Stüber, Olga Solyanik, Andrea Schreier, Thomas Huber, Matthias Frank Froelich, Giuseppe Magistro, Alexander Kretschmer, Christian Stief, Jens Ricke, Michael Ingrisch, Dominik Nörenberg"]}} 
SRT |a GRESSEREVAPERFORMANC0120