Data-driven discovery of statistically relevant information in quantum simulators

Quantum simulators offer powerful means to investigate strongly correlated quantum matter. However, interpreting measurement outcomes in such systems poses significant challenges. Here, we present a theoretical framework for information extraction in synthetic quantum matter, illustrated for the cas...

Full description

Saved in:
Bibliographic Details
Main Authors: Verdel Aranda, Roberto (Author) , Vitale, Vincenzo (Author) , Panda, R. K. (Author) , Donkor, E. D. (Author) , Rodriguez, A. (Author) , Lannig, Stefan (Author) , Deller, Yannick (Author) , Strobel, Helmut (Author) , Oberthaler, Markus K. (Author) , Dalmonte, M. (Author)
Format: Article (Journal)
Language:English
Published: 15 February 2024
In: Physical review
Year: 2024, Volume: 109, Issue: 7, Pages: 075152-1-075152-13
ISSN:2469-9969
DOI:10.1103/PhysRevB.109.075152
Online Access:Verlag, kostenfrei, Volltext: https://doi.org/10.1103/PhysRevB.109.075152
Verlag, kostenfrei, Volltext: https://link.aps.org/doi/10.1103/PhysRevB.109.075152
Get full text
Author Notes:R. Verdel, V. Vitale, R.K. Panda, E.D. Donkor, A. Rodriguez, S. Lannig, Y. Deller, H. Strobel, M.K. Oberthaler, and M. Dalmonte
Description
Summary:Quantum simulators offer powerful means to investigate strongly correlated quantum matter. However, interpreting measurement outcomes in such systems poses significant challenges. Here, we present a theoretical framework for information extraction in synthetic quantum matter, illustrated for the case of a quantum quench in a spinor Bose-Einstein condensate experiment. Employing nonparametric unsupervised learning tools that provide different measures of information content, we demonstrate a theory-agnostic approach to identify dominant degrees of freedom. This enables us to rank operators according to their relevance, akin to effective field theory. To characterize the corresponding effective description, we then explore the intrinsic dimension of data sets as a measure of the complexity of the dynamics. This reveals a simplification of the data structure, which correlates with the emergence of time-dependent universal behavior in the studied system. Our assumption-free approach can be immediately applied in a variety of experimental platforms.
Item Description:Online veröffentlicht: 23. Februar 2024
Gesehen am 13.08.2024
Physical Description:Online Resource
ISSN:2469-9969
DOI:10.1103/PhysRevB.109.075152