Energy spectra and fluxes of turbulent rotating Bose-Einstein condensates in two dimensions

We investigate the scaling of the energy cascade in a harmonically trapped, turbulent, rotating Bose-Einstein condensate in two dimensions. We achieve turbulence by injecting a localized perturbation into the condensate and gradually increasing its rotation frequency from an initial value to a maxim...

Full description

Saved in:
Bibliographic Details
Main Authors: Sivakumar, Anirudh (Author) , Mishra, Pankaj Kumar (Author) , Hujeirat, Ahmad (Author) , Muruganandam, Paulsamy (Author)
Format: Article (Journal)
Language:English
Published: February 2024
In: Physics of fluids
Year: 2024, Volume: 36, Issue: 2
ISSN:1070-6631
DOI:10.1063/5.0190917
Online Access:Verlag, lizenzpflichtig, Volltext: https://doi.org/10.1063/5.0190917
Verlag, lizenzpflichtig, Volltext: https://pubs.aip.org/aip/pof/article-abstract/36/2/027149/3267924/Energy-spectra-and-fluxes-of-turbulent-rotating?redirectedFrom=PDF
Get full text
Author Notes:Anirudh Sivakumar, Pankaj Kumar Mishra, Ahmad A. Hujeirat, Paulsamy Muruganandam
Description
Summary:We investigate the scaling of the energy cascade in a harmonically trapped, turbulent, rotating Bose-Einstein condensate in two dimensions. We achieve turbulence by injecting a localized perturbation into the condensate and gradually increasing its rotation frequency from an initial value to a maximum. The main characteristics of the resulting turbulent state depend on the initial conditions, rotation frequency, and ramp-up time. We analyze the energy and the fluxes of kinetic energy by considering initial profiles without vortices and with vortex lattices. In the case without initial vortices, we find the presence of Kolmogorov-like scaling ( k − 5 / 3) of the incompressible kinetic energy in the inertial range. However, with initial vortex lattices, the energy spectrum follows Vinen scaling ( k − 1) at transient iterations. For cases with high rotating frequencies, Kolmogorov-like scaling emerges at longer durations. We observe positive kinetic energy fluxes with both initial states across all final frequencies, indicating a forward cascade of incompressible and compressible kinetic energy.
Item Description:Online verfügbar: 29. Februar 2024
Gesehen am 19.08.2024
Physical Description:Online Resource
ISSN:1070-6631
DOI:10.1063/5.0190917