Maximal and Borel Anosov representations into Sp(4, R)

We prove that any Borel Anosov representation of a surface group into Sp(4,R) that has maximal Toledo invariant must be Hitchin. We also prove that a representation of a surface group into Sp(2n,R) that is {n−1,n}-Anosov is maximal if and only if it satisfies the hyperconvexity property Hn.

Saved in:
Bibliographic Details
Main Author: Davalo, Colin (Author)
Format: Article (Journal)
Language:English
Published: April 2024
In: Advances in mathematics
Year: 2024, Volume: 442, Pages: 1-21
ISSN:1090-2082
DOI:10.1016/j.aim.2024.109578
Online Access:Verlag, lizenzpflichtig, Volltext: https://doi.org/10.1016/j.aim.2024.109578
Verlag, lizenzpflichtig, Volltext: https://www.sciencedirect.com/science/article/pii/S0001870824000938
Get full text
Author Notes:Colin Davalo (Mathematisches Institut, Ruprecht-Karls Universität Heidelberg)
Description
Summary:We prove that any Borel Anosov representation of a surface group into Sp(4,R) that has maximal Toledo invariant must be Hitchin. We also prove that a representation of a surface group into Sp(2n,R) that is {n−1,n}-Anosov is maximal if and only if it satisfies the hyperconvexity property Hn.
Item Description:Gesehen am 28.08.2024
Physical Description:Online Resource
ISSN:1090-2082
DOI:10.1016/j.aim.2024.109578