Maximal and Borel Anosov representations into Sp(4, R)
We prove that any Borel Anosov representation of a surface group into Sp(4,R) that has maximal Toledo invariant must be Hitchin. We also prove that a representation of a surface group into Sp(2n,R) that is {n−1,n}-Anosov is maximal if and only if it satisfies the hyperconvexity property Hn.
Saved in:
| Main Author: | |
|---|---|
| Format: | Article (Journal) |
| Language: | English |
| Published: |
April 2024
|
| In: |
Advances in mathematics
Year: 2024, Volume: 442, Pages: 1-21 |
| ISSN: | 1090-2082 |
| DOI: | 10.1016/j.aim.2024.109578 |
| Online Access: | Verlag, lizenzpflichtig, Volltext: https://doi.org/10.1016/j.aim.2024.109578 Verlag, lizenzpflichtig, Volltext: https://www.sciencedirect.com/science/article/pii/S0001870824000938 |
| Author Notes: | Colin Davalo (Mathematisches Institut, Ruprecht-Karls Universität Heidelberg) |
| Summary: | We prove that any Borel Anosov representation of a surface group into Sp(4,R) that has maximal Toledo invariant must be Hitchin. We also prove that a representation of a surface group into Sp(2n,R) that is {n−1,n}-Anosov is maximal if and only if it satisfies the hyperconvexity property Hn. |
|---|---|
| Item Description: | Gesehen am 28.08.2024 |
| Physical Description: | Online Resource |
| ISSN: | 1090-2082 |
| DOI: | 10.1016/j.aim.2024.109578 |