Maximal and Borel Anosov representations into Sp(4, R)

We prove that any Borel Anosov representation of a surface group into Sp(4,R) that has maximal Toledo invariant must be Hitchin. We also prove that a representation of a surface group into Sp(2n,R) that is {n−1,n}-Anosov is maximal if and only if it satisfies the hyperconvexity property Hn.

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Davalo, Colin (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: April 2024
In: Advances in mathematics
Year: 2024, Jahrgang: 442, Pages: 1-21
ISSN:1090-2082
DOI:10.1016/j.aim.2024.109578
Online-Zugang:Verlag, lizenzpflichtig, Volltext: https://doi.org/10.1016/j.aim.2024.109578
Verlag, lizenzpflichtig, Volltext: https://www.sciencedirect.com/science/article/pii/S0001870824000938
Volltext
Verfasserangaben:Colin Davalo (Mathematisches Institut, Ruprecht-Karls Universität Heidelberg)

MARC

LEADER 00000caa a2200000 c 4500
001 1899937250
003 DE-627
005 20241205165642.0
007 cr uuu---uuuuu
008 240828s2024 xx |||||o 00| ||eng c
024 7 |a 10.1016/j.aim.2024.109578  |2 doi 
035 |a (DE-627)1899937250 
035 |a (DE-599)KXP1899937250 
035 |a (OCoLC)1475309555 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 27  |2 sdnb 
100 1 |a Davalo, Colin  |d 1997-  |e VerfasserIn  |0 (DE-588)1336742682  |0 (DE-627)1896192785  |4 aut 
245 1 0 |a Maximal and Borel Anosov representations into Sp(4, R)  |c Colin Davalo (Mathematisches Institut, Ruprecht-Karls Universität Heidelberg) 
264 1 |c April 2024 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Gesehen am 28.08.2024 
520 |a We prove that any Borel Anosov representation of a surface group into Sp(4,R) that has maximal Toledo invariant must be Hitchin. We also prove that a representation of a surface group into Sp(2n,R) that is {n−1,n}-Anosov is maximal if and only if it satisfies the hyperconvexity property Hn. 
650 4 |a Anosov representations 
650 4 |a Higher Teichmüller spaces 
650 4 |a Hyperconvexity 
773 0 8 |i Enthalten in  |t Advances in mathematics  |d Amsterdam [u.a.] : Elsevier, 1961  |g 442(2024) vom: Apr., Artikel-ID 109578, Seite 1-21  |h Online-Ressource  |w (DE-627)268759200  |w (DE-600)1472893-X  |w (DE-576)103373292  |x 1090-2082  |7 nnas  |a Maximal and Borel Anosov representations into Sp(4, R) 
773 1 8 |g volume:442  |g year:2024  |g month:04  |g elocationid:109578  |g pages:1-21  |a Maximal and Borel Anosov representations into Sp(4, R) 
856 4 0 |u https://doi.org/10.1016/j.aim.2024.109578  |x Verlag  |x Resolving-System  |z lizenzpflichtig  |3 Volltext 
856 4 0 |u https://www.sciencedirect.com/science/article/pii/S0001870824000938  |x Verlag  |z lizenzpflichtig  |3 Volltext 
951 |a AR 
992 |a 20240828 
993 |a Article 
994 |a 2024 
998 |g 1336742682  |a Davalo, Colin  |m 1336742682:Davalo, Colin  |d 110000  |d 110400  |e 110000PD1336742682  |e 110400PD1336742682  |k 0/110000/  |k 1/110000/110400/  |p 1  |x j  |y j 
999 |a KXP-PPN1899937250  |e 4571878680 
BIB |a Y 
SER |a journal 
JSO |a {"relHost":[{"physDesc":[{"extent":"Online-Ressource"}],"id":{"issn":["1090-2082"],"eki":["268759200"],"zdb":["1472893-X"]},"origin":[{"dateIssuedDisp":"1961-","dateIssuedKey":"1961","publisher":"Elsevier ; Academic Press ; Academic Press ; Academic Press ; Acad. Press","publisherPlace":"Amsterdam [u.a.] ; New York, NY [u.a.] ; Orlando, Fla. ; Brugge ; San Diego, Calif. [u.a.]"}],"language":["eng"],"recId":"268759200","note":["Gesehen am 14.09.2020"],"type":{"media":"Online-Ressource","bibl":"periodical"},"disp":"Maximal and Borel Anosov representations into Sp(4, R)Advances in mathematics","part":{"year":"2024","pages":"1-21","text":"442(2024) vom: Apr., Artikel-ID 109578, Seite 1-21","volume":"442"},"pubHistory":["1.1961/65(1965) - 231.2012; Vol. 232.2013 -"],"title":[{"title_sort":"Advances in mathematics","title":"Advances in mathematics"}]}],"language":["eng"],"recId":"1899937250","type":{"bibl":"article-journal","media":"Online-Ressource"},"note":["Gesehen am 28.08.2024"],"id":{"doi":["10.1016/j.aim.2024.109578"],"eki":["1899937250"]},"origin":[{"dateIssuedDisp":"April 2024","dateIssuedKey":"2024"}],"title":[{"title_sort":"Maximal and Borel Anosov representations into Sp(4, R)","title":"Maximal and Borel Anosov representations into Sp(4, R)"}],"name":{"displayForm":["Colin Davalo (Mathematisches Institut, Ruprecht-Karls Universität Heidelberg)"]},"person":[{"family":"Davalo","given":"Colin","roleDisplay":"VerfasserIn","display":"Davalo, Colin","role":"aut"}]} 
SRT |a DAVALOCOLIMAXIMALAND2024