Maximal and Borel Anosov representations into Sp(4, R)
We prove that any Borel Anosov representation of a surface group into Sp(4,R) that has maximal Toledo invariant must be Hitchin. We also prove that a representation of a surface group into Sp(2n,R) that is {n−1,n}-Anosov is maximal if and only if it satisfies the hyperconvexity property Hn.
Gespeichert in:
| 1. Verfasser: | |
|---|---|
| Dokumenttyp: | Article (Journal) |
| Sprache: | Englisch |
| Veröffentlicht: |
April 2024
|
| In: |
Advances in mathematics
Year: 2024, Jahrgang: 442, Pages: 1-21 |
| ISSN: | 1090-2082 |
| DOI: | 10.1016/j.aim.2024.109578 |
| Online-Zugang: | Verlag, lizenzpflichtig, Volltext: https://doi.org/10.1016/j.aim.2024.109578 Verlag, lizenzpflichtig, Volltext: https://www.sciencedirect.com/science/article/pii/S0001870824000938 |
| Verfasserangaben: | Colin Davalo (Mathematisches Institut, Ruprecht-Karls Universität Heidelberg) |
MARC
| LEADER | 00000caa a2200000 c 4500 | ||
|---|---|---|---|
| 001 | 1899937250 | ||
| 003 | DE-627 | ||
| 005 | 20241205165642.0 | ||
| 007 | cr uuu---uuuuu | ||
| 008 | 240828s2024 xx |||||o 00| ||eng c | ||
| 024 | 7 | |a 10.1016/j.aim.2024.109578 |2 doi | |
| 035 | |a (DE-627)1899937250 | ||
| 035 | |a (DE-599)KXP1899937250 | ||
| 035 | |a (OCoLC)1475309555 | ||
| 040 | |a DE-627 |b ger |c DE-627 |e rda | ||
| 041 | |a eng | ||
| 084 | |a 27 |2 sdnb | ||
| 100 | 1 | |a Davalo, Colin |d 1997- |e VerfasserIn |0 (DE-588)1336742682 |0 (DE-627)1896192785 |4 aut | |
| 245 | 1 | 0 | |a Maximal and Borel Anosov representations into Sp(4, R) |c Colin Davalo (Mathematisches Institut, Ruprecht-Karls Universität Heidelberg) |
| 264 | 1 | |c April 2024 | |
| 336 | |a Text |b txt |2 rdacontent | ||
| 337 | |a Computermedien |b c |2 rdamedia | ||
| 338 | |a Online-Ressource |b cr |2 rdacarrier | ||
| 500 | |a Gesehen am 28.08.2024 | ||
| 520 | |a We prove that any Borel Anosov representation of a surface group into Sp(4,R) that has maximal Toledo invariant must be Hitchin. We also prove that a representation of a surface group into Sp(2n,R) that is {n−1,n}-Anosov is maximal if and only if it satisfies the hyperconvexity property Hn. | ||
| 650 | 4 | |a Anosov representations | |
| 650 | 4 | |a Higher Teichmüller spaces | |
| 650 | 4 | |a Hyperconvexity | |
| 773 | 0 | 8 | |i Enthalten in |t Advances in mathematics |d Amsterdam [u.a.] : Elsevier, 1961 |g 442(2024) vom: Apr., Artikel-ID 109578, Seite 1-21 |h Online-Ressource |w (DE-627)268759200 |w (DE-600)1472893-X |w (DE-576)103373292 |x 1090-2082 |7 nnas |a Maximal and Borel Anosov representations into Sp(4, R) |
| 773 | 1 | 8 | |g volume:442 |g year:2024 |g month:04 |g elocationid:109578 |g pages:1-21 |a Maximal and Borel Anosov representations into Sp(4, R) |
| 856 | 4 | 0 | |u https://doi.org/10.1016/j.aim.2024.109578 |x Verlag |x Resolving-System |z lizenzpflichtig |3 Volltext |
| 856 | 4 | 0 | |u https://www.sciencedirect.com/science/article/pii/S0001870824000938 |x Verlag |z lizenzpflichtig |3 Volltext |
| 951 | |a AR | ||
| 992 | |a 20240828 | ||
| 993 | |a Article | ||
| 994 | |a 2024 | ||
| 998 | |g 1336742682 |a Davalo, Colin |m 1336742682:Davalo, Colin |d 110000 |d 110400 |e 110000PD1336742682 |e 110400PD1336742682 |k 0/110000/ |k 1/110000/110400/ |p 1 |x j |y j | ||
| 999 | |a KXP-PPN1899937250 |e 4571878680 | ||
| BIB | |a Y | ||
| SER | |a journal | ||
| JSO | |a {"relHost":[{"physDesc":[{"extent":"Online-Ressource"}],"id":{"issn":["1090-2082"],"eki":["268759200"],"zdb":["1472893-X"]},"origin":[{"dateIssuedDisp":"1961-","dateIssuedKey":"1961","publisher":"Elsevier ; Academic Press ; Academic Press ; Academic Press ; Acad. Press","publisherPlace":"Amsterdam [u.a.] ; New York, NY [u.a.] ; Orlando, Fla. ; Brugge ; San Diego, Calif. [u.a.]"}],"language":["eng"],"recId":"268759200","note":["Gesehen am 14.09.2020"],"type":{"media":"Online-Ressource","bibl":"periodical"},"disp":"Maximal and Borel Anosov representations into Sp(4, R)Advances in mathematics","part":{"year":"2024","pages":"1-21","text":"442(2024) vom: Apr., Artikel-ID 109578, Seite 1-21","volume":"442"},"pubHistory":["1.1961/65(1965) - 231.2012; Vol. 232.2013 -"],"title":[{"title_sort":"Advances in mathematics","title":"Advances in mathematics"}]}],"language":["eng"],"recId":"1899937250","type":{"bibl":"article-journal","media":"Online-Ressource"},"note":["Gesehen am 28.08.2024"],"id":{"doi":["10.1016/j.aim.2024.109578"],"eki":["1899937250"]},"origin":[{"dateIssuedDisp":"April 2024","dateIssuedKey":"2024"}],"title":[{"title_sort":"Maximal and Borel Anosov representations into Sp(4, R)","title":"Maximal and Borel Anosov representations into Sp(4, R)"}],"name":{"displayForm":["Colin Davalo (Mathematisches Institut, Ruprecht-Karls Universität Heidelberg)"]},"person":[{"family":"Davalo","given":"Colin","roleDisplay":"VerfasserIn","display":"Davalo, Colin","role":"aut"}]} | ||
| SRT | |a DAVALOCOLIMAXIMALAND2024 | ||