Maximal and Borel Anosov representations into Sp(4, R)
We prove that any Borel Anosov representation of a surface group into Sp(4,R) that has maximal Toledo invariant must be Hitchin. We also prove that a representation of a surface group into Sp(2n,R) that is {n−1,n}-Anosov is maximal if and only if it satisfies the hyperconvexity property Hn.
Gespeichert in:
| 1. Verfasser: | |
|---|---|
| Dokumenttyp: | Article (Journal) |
| Sprache: | Englisch |
| Veröffentlicht: |
April 2024
|
| In: |
Advances in mathematics
Year: 2024, Jahrgang: 442, Pages: 1-21 |
| ISSN: | 1090-2082 |
| DOI: | 10.1016/j.aim.2024.109578 |
| Online-Zugang: | Verlag, lizenzpflichtig, Volltext: https://doi.org/10.1016/j.aim.2024.109578 Verlag, lizenzpflichtig, Volltext: https://www.sciencedirect.com/science/article/pii/S0001870824000938 |
| Verfasserangaben: | Colin Davalo (Mathematisches Institut, Ruprecht-Karls Universität Heidelberg) |
| Zusammenfassung: | We prove that any Borel Anosov representation of a surface group into Sp(4,R) that has maximal Toledo invariant must be Hitchin. We also prove that a representation of a surface group into Sp(2n,R) that is {n−1,n}-Anosov is maximal if and only if it satisfies the hyperconvexity property Hn. |
|---|---|
| Beschreibung: | Gesehen am 28.08.2024 |
| Beschreibung: | Online Resource |
| ISSN: | 1090-2082 |
| DOI: | 10.1016/j.aim.2024.109578 |