Endoscopy on SL2-eigenvarieties

In this paper, we study 𝑝-adic endoscopy on eigenvarieties for SL 2 \mathrm{SL}_{2} over totally real fields, taking a geometric perspective. We show that non-automorphic members of endoscopic 𝐿-packets of regular weight contribute eigenvectors to overconvergent cohomology at critically refined endo...

Full description

Saved in:
Bibliographic Details
Main Authors: Johansson, Christian (Author) , Ludwig, Judith (Author)
Format: Article (Journal)
Language:English
Published: 28. Mai 2024
In: Journal für die reine und angewandte Mathematik
Year: 2024, Issue: 813, Pages: 1-79
ISSN:1435-5345
DOI:10.1515/crelle-2024-0026
Online Access:Verlag, lizenzpflichtig, Volltext: https://doi.org/10.1515/crelle-2024-0026
Verlag, lizenzpflichtig, Volltext: https://www.degruyterbrill.com/document/doi/10.1515/crelle-2024-0026/html?lang=de
Get full text
Author Notes:by Christian Johansson at Gothenburg and Judith Ludwig at Heidelberg
Description
Summary:In this paper, we study 𝑝-adic endoscopy on eigenvarieties for SL 2 \mathrm{SL}_{2} over totally real fields, taking a geometric perspective. We show that non-automorphic members of endoscopic 𝐿-packets of regular weight contribute eigenvectors to overconvergent cohomology at critically refined endoscopic points on the eigenvariety, and we precisely quantify this contribution. This gives a new perspective on and generalizes previous work of the second author. Our methods are geometric, and are based on showing that the SL 2 \mathrm{SL}_{2} -eigenvariety is locally a quotient of an eigenvariety for GL 2 \mathrm{GL}_{2} , which allows us to explicitly describe the local geometry of the SL 2 \mathrm{SL}_{2} -eigenvariety. In particular, we show that it often fails to be Gorenstein.
Item Description:Gesehen am 03.09.2024
Physical Description:Online Resource
ISSN:1435-5345
DOI:10.1515/crelle-2024-0026