Ionic mechanisms of disopyramide prolonging action potential duration in human-induced pluripotent stem cell-derived cardiomyocytes from a patient with short QT syndrome type 1

<p>Short QT syndrome (SQTS) is associated with tachyarrhythmias and sudden cardiac death. So far, only quinidine has been demonstrated to be effective in patients with SQTS type 1(SQTS1). The aim of this study was to investigate the mechanisms of disopyramide underlying its antiarrhythmic effe...

Full description

Saved in:
Bibliographic Details
Main Authors: Lan, Huan (Author) , Xu, Qiang (Author) , El-Battrawy, Ibrahim (Author) , Zhong, Rujia (Author) , Li, Xin (Author) , Lang, Siegfried (Author) , Cyganek, Lukas (Author) , Borggrefe, Martin (Author) , Zhou, Xiao-Bo (Author) , Akın, Ibrahim (Author)
Format: Article (Journal)
Language:English
Published: 12 October 2020
In: Frontiers in pharmacology
Year: 2020, Volume: 11, Pages: 1-11
ISSN:1663-9812
DOI:10.3389/fphar.2020.554422
Online Access:Verlag, kostenfrei, Volltext: https://doi.org/10.3389/fphar.2020.554422
Verlag, kostenfrei, Volltext: https://www.frontiersin.org/journals/pharmacology/articles/10.3389/fphar.2020.554422/full
Get full text
Author Notes:Huan Lan, Qiang Xu, Ibrahim El-Battrawy, Rujia Zhong, Xin Li, Siegfried Lang, Lukas Cyganek, Martin Borggrefe, Xiaobo Zhou and Ibrahim Akin
Description
Summary:<p>Short QT syndrome (SQTS) is associated with tachyarrhythmias and sudden cardiac death. So far, only quinidine has been demonstrated to be effective in patients with SQTS type 1(SQTS1). The aim of this study was to investigate the mechanisms of disopyramide underlying its antiarrhythmic effects in SQTS1 with the N588K mutation in HERG channel. Human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) from a patient with SQTS1 and a healthy donor, patch clamp, and calcium imaging measurements were employed to assess the drug effects. Disopyramide prolonged the action potential duration (APD) in hiPSC-CMs from a SQTS1-patient (SQTS1-hiPSC-CMs). In spontaneously beating SQTS1-hiPSC-CMs challenged by carbachol plus epinephrine, disopyramide reduced the arrhythmic events. Disopyramide enhanced the inward L-type calcium channel current (I<sub>Ca-L</sub>), the late sodium channel current (late I<sub>Na</sub>) and the Na/Ca exchanger current (I<sub>NCX</sub>), but it reduced the outward small-conductance calcium-activated potassium channel current (I<sub>SK</sub>), leading to APD-prolongation. Disopyramide displayed no effects on the rapidly and slowly activating delayed rectifier and ATP-sensitive potassium channel currents. In hiPSC-CMs from the healthy donor, disopyramide reduced peak I<sub>Na</sub>, I<sub>Ca-L</sub>, I<sub>Kr</sub>, and I<sub>SK</sub> but enhanced late I<sub>Na</sub> and I<sub>NCX</sub>. The results demonstrated that disopyramide may be effective for preventing tachyarrhythmias in SQTS1-patients carrying the N588K mutation in HERG channel by APD-prolongation <italic>via</italic> enhancing I<sub>Ca-L</sub>, late I<sub>Na</sub>, I<sub>NCX</sub>, and reducing I<sub>SK</sub>.</p>
Item Description:Gesehen am 30.09.2024
Physical Description:Online Resource
ISSN:1663-9812
DOI:10.3389/fphar.2020.554422