UAV-assisted municipal solid waste monitoring for informed disposal decisions [research data]

MUNICIPAL SOLID WASTE DETECTION MODEL OF CONFERENCE PAPER (UAV-Assisted Municipal Solid Waste Monitoring for Informed Disposal Decisions) The population growth and urbanisation trend in Africa has exacerbated municipal solid waste (MSW) generation, posing significant environmental pollution and heal...

Full description

Saved in:
Bibliographic Details
Main Authors: Knoblauch, Steffen (Author) , Szamek, Levi (Author) , Wenk, Jonas (Author) , Chazua, Iddy (Author) , Maholi, Innocent (Author) , Adamiak, Maciej (Author) , Lautenbach, Sven (Author) , Zipf, Alexander (Author)
Format: Database Research Data
Language:English
Published: Heidelberg Universität 2024-10-15
DOI:10.11588/data/CEIWEA
Subjects:
Online Access:Resolving-System, kostenfrei, Volltext: https://doi.org/10.11588/data/CEIWEA
Verlag, kostenfrei, Volltext: https://heidata.uni-heidelberg.de/dataset.xhtml?persistentId=doi:10.11588/data/CEIWEA
Get full text
Author Notes:Steffen Knoblauch, Levi Szamek, Jonas Wenk, Iddy Chazua, Innocent Maholi, Maciej Adamiak, Sven Lautenbach, Alexander Zipf
Description
Summary:MUNICIPAL SOLID WASTE DETECTION MODEL OF CONFERENCE PAPER (UAV-Assisted Municipal Solid Waste Monitoring for Informed Disposal Decisions) The population growth and urbanisation trend in Africa has exacerbated municipal solid waste (MSW) generation, posing significant environmental pollution and health hazards (SDG 3, 6, 14, 15). Addressing this issue necessitates efficient waste management strategies, underpinned by accurate waste detection and mapping methodologies. This study introduces a fine-tuned MSW detection model tailored for UAV imagery. The model's efficacy was assessed within the Msimbazi delta in Dar es Salaam, Tanzania. Evaluation on an independent test dataset yielded an F1 score of 0.92 across all MSW instances. The generated MSW pile map revealed a threefold higher contamination level in the Msimbazi River bed compared to surrounding areas. The deployment of the fine-tuned model enables local authorities to generate regular MSW distribution maps based on UAV imagery, facilitating targeted waste disposal interventions and mitigating future risks associated with flooding, water contamination, or vector-borne diseases. (2024-05-17)
Item Description:Gefördert durch: Klaus Tschira Foundation; Deutsche Forschungsgemeinschaft (DFG): 451956976
Gesehen am 15.10.2024
Physical Description:Online Resource
DOI:10.11588/data/CEIWEA