Surgical phase and instrument recognition: how to identify appropriate dataset splits

Machine learning approaches can only be reliably evaluated if training, validation, and test data splits are representative and not affected by the absence of classes. Surgical workflow and instrument recognition are two tasks that are complicated in this manner, because of heavy data imbalances res...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Kostiuchik, Georgii (VerfasserIn) , Sharan, Lalith (VerfasserIn) , Mayer, Benedikt (VerfasserIn) , Wolf, Ivo (VerfasserIn) , Preim, Bernhard (VerfasserIn) , Engelhardt, Sandy (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: 29 January 2024
In: International journal of computer assisted radiology and surgery
Year: 2024, Jahrgang: 19, Heft: 4, Pages: 699-711
ISSN:1861-6429
DOI:10.1007/s11548-024-03063-9
Online-Zugang:Verlag, kostenfrei, Volltext: https://doi.org/10.1007/s11548-024-03063-9
Verlag, kostenfrei, Volltext: https://link.springer.com/article/10.1007/s11548-024-03063-9
Volltext
Verfasserangaben:Georgii Kostiuchik, Lalith Sharan, Benedikt Mayer, Ivo Wolf, Bernhard Preim, Sandy Engelhardt
Beschreibung
Zusammenfassung:Machine learning approaches can only be reliably evaluated if training, validation, and test data splits are representative and not affected by the absence of classes. Surgical workflow and instrument recognition are two tasks that are complicated in this manner, because of heavy data imbalances resulting from different length of phases and their potential erratic occurrences. Furthermore, sub-properties like instrument (co-)occurrence are usually not particularly considered when defining the split.
Beschreibung:Gesehen am 05.11.2024
Beschreibung:Online Resource
ISSN:1861-6429
DOI:10.1007/s11548-024-03063-9