Finiteness of analytic cohomology of Lubin-Tate (φL,ΓL)-modules
We prove finiteness and base change properties for analytic cohomology of families of L-analytic (φL,ΓL)-modules parametrised by affinoid algebras in the sense of Tate. For technical reasons we work over a field K containing a period of the Lubin-Tate group, which allows us to describe analytic coho...
Gespeichert in:
| 1. Verfasser: | |
|---|---|
| Dokumenttyp: | Article (Journal) |
| Sprache: | Englisch |
| Veröffentlicht: |
October 2024
|
| In: |
Journal of number theory
Year: 2024, Jahrgang: 263, Pages: 24-78 |
| ISSN: | 1096-1658 |
| DOI: | 10.1016/j.jnt.2024.04.008 |
| Online-Zugang: | Verlag, kostenfrei, Volltext: https://doi.org/10.1016/j.jnt.2024.04.008 Verlag, lizenzpflichtig, Volltext: https://www.sciencedirect.com/science/article/pii/S0022314X24001069 |
| Verfasserangaben: | Rustam Steingart |
| Zusammenfassung: | We prove finiteness and base change properties for analytic cohomology of families of L-analytic (φL,ΓL)-modules parametrised by affinoid algebras in the sense of Tate. For technical reasons we work over a field K containing a period of the Lubin-Tate group, which allows us to describe analytic cohomology in terms of an explicit generalised Herr complex. |
|---|---|
| Beschreibung: | Online verfügbar: 17. Mai 2024, Artikelversion: 24. Mai 2024 Gesehen am 18.11.2024 |
| Beschreibung: | Online Resource |
| ISSN: | 1096-1658 |
| DOI: | 10.1016/j.jnt.2024.04.008 |