Finiteness of analytic cohomology of Lubin-Tate (φL,ΓL)-modules

We prove finiteness and base change properties for analytic cohomology of families of L-analytic (φL,ΓL)-modules parametrised by affinoid algebras in the sense of Tate. For technical reasons we work over a field K containing a period of the Lubin-Tate group, which allows us to describe analytic coho...

Full description

Saved in:
Bibliographic Details
Main Author: Steingart, Rustam (Author)
Format: Article (Journal)
Language:English
Published: October 2024
In: Journal of number theory
Year: 2024, Volume: 263, Pages: 24-78
ISSN:1096-1658
DOI:10.1016/j.jnt.2024.04.008
Online Access:Verlag, kostenfrei, Volltext: https://doi.org/10.1016/j.jnt.2024.04.008
Verlag, lizenzpflichtig, Volltext: https://www.sciencedirect.com/science/article/pii/S0022314X24001069
Get full text
Author Notes:Rustam Steingart

MARC

LEADER 00000caa a2200000 c 4500
001 1908866772
003 DE-627
005 20241205221125.0
007 cr uuu---uuuuu
008 241118s2024 xx |||||o 00| ||eng c
024 7 |a 10.1016/j.jnt.2024.04.008  |2 doi 
035 |a (DE-627)1908866772 
035 |a (DE-599)KXP1908866772 
035 |a (OCoLC)1475647416 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 27  |2 sdnb 
100 1 |a Steingart, Rustam  |d 1995-  |e VerfasserIn  |0 (DE-588)126993497X  |0 (DE-627)1818397838  |4 aut 
245 1 0 |a Finiteness of analytic cohomology of Lubin-Tate (φL,ΓL)-modules  |c Rustam Steingart 
246 3 3 |a Finiteness of analytic cohomology of Lubin-Tate (phiL,GammaL)-modules 
264 1 |c October 2024 
300 |a 55 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Online verfügbar: 17. Mai 2024, Artikelversion: 24. Mai 2024 
500 |a Gesehen am 18.11.2024 
520 |a We prove finiteness and base change properties for analytic cohomology of families of L-analytic (φL,ΓL)-modules parametrised by affinoid algebras in the sense of Tate. For technical reasons we work over a field K containing a period of the Lubin-Tate group, which allows us to describe analytic cohomology in terms of an explicit generalised Herr complex. 
650 4 |a -adic Galois representations 
650 4 |a -modules 
650 4 |a Analytic cohomology 
773 0 8 |i Enthalten in  |t Journal of number theory  |d Orlando, Fla. : Elsevier, 1969  |g 263(2024) vom: Okt., Seite 24-78  |h Online-Ressource  |w (DE-627)267328192  |w (DE-600)1469778-6  |w (DE-576)103373241  |x 1096-1658  |7 nnas  |a Finiteness of analytic cohomology of Lubin-Tate (φL,ΓL)-modules 
773 1 8 |g volume:263  |g year:2024  |g month:10  |g pages:24-78  |g extent:55  |a Finiteness of analytic cohomology of Lubin-Tate (φL,ΓL)-modules 
856 4 0 |u https://doi.org/10.1016/j.jnt.2024.04.008  |x Verlag  |x Resolving-System  |z kostenfrei  |3 Volltext 
856 4 0 |u https://www.sciencedirect.com/science/article/pii/S0022314X24001069  |x Verlag  |z lizenzpflichtig  |3 Volltext 
951 |a AR 
992 |a 20241118 
993 |a Article 
994 |a 2024 
999 |a KXP-PPN1908866772  |e 4616058490 
BIB |a Y 
SER |a journal 
JSO |a {"person":[{"given":"Rustam","family":"Steingart","role":"aut","display":"Steingart, Rustam","roleDisplay":"VerfasserIn"}],"title":[{"title_sort":"Finiteness of analytic cohomology of Lubin-Tate (φL,ΓL)-modules","title":"Finiteness of analytic cohomology of Lubin-Tate (φL,ΓL)-modules"}],"note":["Online verfügbar: 17. Mai 2024, Artikelversion: 24. Mai 2024","Gesehen am 18.11.2024"],"type":{"media":"Online-Ressource","bibl":"article-journal"},"language":["eng"],"recId":"1908866772","titleAlt":[{"title":"Finiteness of analytic cohomology of Lubin-Tate (phiL,GammaL)-modules"}],"name":{"displayForm":["Rustam Steingart"]},"origin":[{"dateIssuedKey":"2024","dateIssuedDisp":"October 2024"}],"id":{"eki":["1908866772"],"doi":["10.1016/j.jnt.2024.04.008"]},"physDesc":[{"extent":"55 S."}],"relHost":[{"disp":"Finiteness of analytic cohomology of Lubin-Tate (φL,ΓL)-modulesJournal of number theory","note":["Gesehen am 20.06.2023"],"type":{"media":"Online-Ressource","bibl":"periodical"},"recId":"267328192","language":["eng"],"pubHistory":["1.1969 -"],"part":{"year":"2024","pages":"24-78","volume":"263","text":"263(2024) vom: Okt., Seite 24-78","extent":"55"},"title":[{"title":"Journal of number theory","title_sort":"Journal of number theory"}],"physDesc":[{"extent":"Online-Ressource"}],"origin":[{"publisher":"Elsevier ; Acad. Pr. ; Acad. Press","dateIssuedKey":"1969","dateIssuedDisp":"1969-","publisherPlace":"Orlando, Fla. ; New York, NY [u.a.] ; San Diego, Calif. [u.a.]"}],"id":{"zdb":["1469778-6"],"eki":["267328192"],"issn":["1096-1658"]}}]} 
SRT |a STEINGARTRFINITENESS2024