Finiteness of analytic cohomology of Lubin-Tate (φL,ΓL)-modules

We prove finiteness and base change properties for analytic cohomology of families of L-analytic (φL,ΓL)-modules parametrised by affinoid algebras in the sense of Tate. For technical reasons we work over a field K containing a period of the Lubin-Tate group, which allows us to describe analytic coho...

Full description

Saved in:
Bibliographic Details
Main Author: Steingart, Rustam (Author)
Format: Article (Journal)
Language:English
Published: October 2024
In: Journal of number theory
Year: 2024, Volume: 263, Pages: 24-78
ISSN:1096-1658
DOI:10.1016/j.jnt.2024.04.008
Online Access:Verlag, kostenfrei, Volltext: https://doi.org/10.1016/j.jnt.2024.04.008
Verlag, lizenzpflichtig, Volltext: https://www.sciencedirect.com/science/article/pii/S0022314X24001069
Get full text
Author Notes:Rustam Steingart
Description
Summary:We prove finiteness and base change properties for analytic cohomology of families of L-analytic (φL,ΓL)-modules parametrised by affinoid algebras in the sense of Tate. For technical reasons we work over a field K containing a period of the Lubin-Tate group, which allows us to describe analytic cohomology in terms of an explicit generalised Herr complex.
Item Description:Online verfügbar: 17. Mai 2024, Artikelversion: 24. Mai 2024
Gesehen am 18.11.2024
Physical Description:Online Resource
ISSN:1096-1658
DOI:10.1016/j.jnt.2024.04.008