Minimal energy for geometrically nonlinear elastic inclusions in two dimensions
We are concerned with a variant of the isoperimetric problem, which in our setting arises in a geometrically nonlinear two-well problem in elasticity. More precisely, we investigate the optimal scaling of the energy of an elastic inclusion of a fixed volume for which the energy is determined by a su...
Gespeichert in:
| Hauptverfasser: | , , , |
|---|---|
| Dokumenttyp: | Article (Journal) |
| Sprache: | Englisch |
| Veröffentlicht: |
2024
|
| In: |
Proceedings. Section A, Mathematics
Year: 2024, Jahrgang: 154, Heft: 3, Pages: 769-792 |
| ISSN: | 1473-7124 |
| DOI: | 10.1017/prm.2023.36 |
| Online-Zugang: | Verlag, kostenfrei, Volltext: https://doi.org/10.1017/prm.2023.36 Verlag, kostenfrei, Volltext: https://www.cambridge.org/core/journals/proceedings-of-the-royal-society-of-edinburgh-section-a-mathematics/article/minimal-energy-for-geometrically-nonlinear-elastic-inclusions-in-two-dimensions/8E4138F662DB9421EEF5E96FB8A95D34 |
| Verfasserangaben: | Ibrokhimbek Akramov, Hans Knüpfer, Martin Kružík, Angkana Rüland |
| Zusammenfassung: | We are concerned with a variant of the isoperimetric problem, which in our setting arises in a geometrically nonlinear two-well problem in elasticity. More precisely, we investigate the optimal scaling of the energy of an elastic inclusion of a fixed volume for which the energy is determined by a surface and an (anisotropic) elastic contribution. Following ideas from Conti and Schweizer (Commun. Pure Appl. Math. 59 (2006), 830-868) and Knüpfer and Kohn (Proc. R. Soc. London Ser. A Math. Phys. Eng. Sci. 467 (2011), 695-717), we derive the lower scaling bound by invoking a two-well rigidity argument and a covering result. The upper bound follows from a well-known construction for a lens-shaped elastic inclusion. |
|---|---|
| Beschreibung: | Online publiziert von Cambridge University Press: 12 Mai 2023 Gesehen am 09.12.2024 |
| Beschreibung: | Online Resource |
| ISSN: | 1473-7124 |
| DOI: | 10.1017/prm.2023.36 |