Stable pairs and Gopakumar-Vafa type invariants on holomorphic symplectic 4-folds

As an analogy to Gopakumar-Vafa conjecture on Calabi-Yau 3-folds, Klemm-Pandharipande defined Gopakumar-Vafa type invariants of a Calabi-Yau 4-fold X using Gromov-Witten theory. When X is holomorphic symplectic, Gromov-Witten invariants vanish and one can consider the corresponding reduced theory. I...

Full description

Saved in:
Bibliographic Details
Main Authors: Cao, Yalong (Author) , Oberdieck, Georg (Author) , Toda, Yukinobu (Author)
Format: Article (Journal)
Language:English
Published: 29 October 2022
In: Advances in mathematics
Year: 2022, Volume: 408, Issue: B, Pages: 1-44
ISSN:1090-2082
DOI:10.1016/j.aim.2022.108605
Online Access:Verlag, lizenzpflichtig, Volltext: https://doi.org/10.1016/j.aim.2022.108605
Verlag, lizenzpflichtig, Volltext: https://www.sciencedirect.com/science/article/pii/S0001870822004224
Get full text
Author Notes:Yalong Cao, Georg Oberdieck, Yukinobu Toda
Description
Summary:As an analogy to Gopakumar-Vafa conjecture on Calabi-Yau 3-folds, Klemm-Pandharipande defined Gopakumar-Vafa type invariants of a Calabi-Yau 4-fold X using Gromov-Witten theory. When X is holomorphic symplectic, Gromov-Witten invariants vanish and one can consider the corresponding reduced theory. In a companion work, we propose a definition of Gopakumar-Vafa type invariants for such a reduced theory. In this paper, we give them a sheaf theoretic interpretation via moduli spaces of stable pairs.
Item Description:Gesehen am 12.12.2024
Physical Description:Online Resource
ISSN:1090-2082
DOI:10.1016/j.aim.2022.108605