Stable pairs and Gopakumar-Vafa type invariants on holomorphic symplectic 4-folds

As an analogy to Gopakumar-Vafa conjecture on Calabi-Yau 3-folds, Klemm-Pandharipande defined Gopakumar-Vafa type invariants of a Calabi-Yau 4-fold X using Gromov-Witten theory. When X is holomorphic symplectic, Gromov-Witten invariants vanish and one can consider the corresponding reduced theory. I...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Cao, Yalong (VerfasserIn) , Oberdieck, Georg (VerfasserIn) , Toda, Yukinobu (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: 29 October 2022
In: Advances in mathematics
Year: 2022, Jahrgang: 408, Heft: B, Pages: 1-44
ISSN:1090-2082
DOI:10.1016/j.aim.2022.108605
Online-Zugang:Verlag, lizenzpflichtig, Volltext: https://doi.org/10.1016/j.aim.2022.108605
Verlag, lizenzpflichtig, Volltext: https://www.sciencedirect.com/science/article/pii/S0001870822004224
Volltext
Verfasserangaben:Yalong Cao, Georg Oberdieck, Yukinobu Toda

MARC

LEADER 00000caa a2200000 c 4500
001 1912165775
003 DE-627
005 20250716215418.0
007 cr uuu---uuuuu
008 241212s2022 xx |||||o 00| ||eng c
024 7 |a 10.1016/j.aim.2022.108605  |2 doi 
035 |a (DE-627)1912165775 
035 |a (DE-599)KXP1912165775 
035 |a (OCoLC)1528015279 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 29  |2 sdnb 
100 1 |a Cao, Yalong  |d 1988-  |e VerfasserIn  |0 (DE-588)1350875716  |0 (DE-627)1912166550  |4 aut 
245 1 0 |a Stable pairs and Gopakumar-Vafa type invariants on holomorphic symplectic 4-folds  |c Yalong Cao, Georg Oberdieck, Yukinobu Toda 
264 1 |c 29 October 2022 
300 |a 44 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Gesehen am 12.12.2024 
520 |a As an analogy to Gopakumar-Vafa conjecture on Calabi-Yau 3-folds, Klemm-Pandharipande defined Gopakumar-Vafa type invariants of a Calabi-Yau 4-fold X using Gromov-Witten theory. When X is holomorphic symplectic, Gromov-Witten invariants vanish and one can consider the corresponding reduced theory. In a companion work, we propose a definition of Gopakumar-Vafa type invariants for such a reduced theory. In this paper, we give them a sheaf theoretic interpretation via moduli spaces of stable pairs. 
650 4 |a Gopakumar-Vafa type invariants 
650 4 |a Holomorphic symplectic 4-folds 
650 4 |a Stable pairs 
700 1 |a Oberdieck, Georg  |d 1988-  |e VerfasserIn  |0 (DE-588)1081631104  |0 (DE-627)846374161  |0 (DE-576)454645198  |4 aut 
700 1 |a Toda, Yukinobu  |e VerfasserIn  |0 (DE-588)1337567361  |0 (DE-627)1897317921  |4 aut 
773 0 8 |i Enthalten in  |t Advances in mathematics  |d Amsterdam [u.a.] : Elsevier, 1961  |g 408(2022), B, Artikel-ID 108605, Seite 1-44  |h Online-Ressource  |w (DE-627)268759200  |w (DE-600)1472893-X  |w (DE-576)103373292  |x 1090-2082  |7 nnas  |a Stable pairs and Gopakumar-Vafa type invariants on holomorphic symplectic 4-folds 
773 1 8 |g volume:408  |g year:2022  |g number:B  |g elocationid:108605  |g pages:1-44  |g extent:44  |a Stable pairs and Gopakumar-Vafa type invariants on holomorphic symplectic 4-folds 
856 4 0 |u https://doi.org/10.1016/j.aim.2022.108605  |x Verlag  |x Resolving-System  |z lizenzpflichtig  |3 Volltext 
856 4 0 |u https://www.sciencedirect.com/science/article/pii/S0001870822004224  |x Verlag  |z lizenzpflichtig  |3 Volltext 
951 |a AR 
992 |a 20241212 
993 |a Article 
994 |a 2022 
998 |g 1081631104  |a Oberdieck, Georg  |m 1081631104:Oberdieck, Georg  |p 2 
999 |a KXP-PPN1912165775  |e 4634970791 
BIB |a Y 
SER |a journal 
JSO |a {"relHost":[{"id":{"issn":["1090-2082"],"eki":["268759200"],"zdb":["1472893-X"]},"pubHistory":["1.1961/65(1965) - 231.2012; Vol. 232.2013 -"],"type":{"bibl":"periodical","media":"Online-Ressource"},"part":{"issue":"B","volume":"408","pages":"1-44","extent":"44","year":"2022","text":"408(2022), B, Artikel-ID 108605, Seite 1-44"},"recId":"268759200","note":["Gesehen am 14.09.2020"],"origin":[{"publisherPlace":"Amsterdam [u.a.] ; New York, NY [u.a.] ; Orlando, Fla. ; Brugge ; San Diego, Calif. [u.a.]","dateIssuedKey":"1961","publisher":"Elsevier ; Academic Press ; Academic Press ; Academic Press ; Acad. Press","dateIssuedDisp":"1961-"}],"physDesc":[{"extent":"Online-Ressource"}],"language":["eng"],"disp":"Stable pairs and Gopakumar-Vafa type invariants on holomorphic symplectic 4-foldsAdvances in mathematics","title":[{"title_sort":"Advances in mathematics","title":"Advances in mathematics"}]}],"name":{"displayForm":["Yalong Cao, Georg Oberdieck, Yukinobu Toda"]},"id":{"eki":["1912165775"],"doi":["10.1016/j.aim.2022.108605"]},"origin":[{"dateIssuedDisp":"29 October 2022","dateIssuedKey":"2022"}],"physDesc":[{"extent":"44 S."}],"language":["eng"],"person":[{"display":"Cao, Yalong","given":"Yalong","roleDisplay":"VerfasserIn","role":"aut","family":"Cao"},{"role":"aut","roleDisplay":"VerfasserIn","given":"Georg","display":"Oberdieck, Georg","family":"Oberdieck"},{"display":"Toda, Yukinobu","given":"Yukinobu","roleDisplay":"VerfasserIn","role":"aut","family":"Toda"}],"title":[{"title_sort":"Stable pairs and Gopakumar-Vafa type invariants on holomorphic symplectic 4-folds","title":"Stable pairs and Gopakumar-Vafa type invariants on holomorphic symplectic 4-folds"}],"type":{"bibl":"article-journal","media":"Online-Ressource"},"recId":"1912165775","note":["Gesehen am 12.12.2024"]} 
SRT |a CAOYALONGOSTABLEPAIR2920