Stable pairs and Gopakumar-Vafa type invariants on holomorphic symplectic 4-folds
As an analogy to Gopakumar-Vafa conjecture on Calabi-Yau 3-folds, Klemm-Pandharipande defined Gopakumar-Vafa type invariants of a Calabi-Yau 4-fold X using Gromov-Witten theory. When X is holomorphic symplectic, Gromov-Witten invariants vanish and one can consider the corresponding reduced theory. I...
Gespeichert in:
| Hauptverfasser: | , , |
|---|---|
| Dokumenttyp: | Article (Journal) |
| Sprache: | Englisch |
| Veröffentlicht: |
29 October 2022
|
| In: |
Advances in mathematics
Year: 2022, Jahrgang: 408, Heft: B, Pages: 1-44 |
| ISSN: | 1090-2082 |
| DOI: | 10.1016/j.aim.2022.108605 |
| Online-Zugang: | Verlag, lizenzpflichtig, Volltext: https://doi.org/10.1016/j.aim.2022.108605 Verlag, lizenzpflichtig, Volltext: https://www.sciencedirect.com/science/article/pii/S0001870822004224 |
| Verfasserangaben: | Yalong Cao, Georg Oberdieck, Yukinobu Toda |
MARC
| LEADER | 00000caa a2200000 c 4500 | ||
|---|---|---|---|
| 001 | 1912165775 | ||
| 003 | DE-627 | ||
| 005 | 20250716215418.0 | ||
| 007 | cr uuu---uuuuu | ||
| 008 | 241212s2022 xx |||||o 00| ||eng c | ||
| 024 | 7 | |a 10.1016/j.aim.2022.108605 |2 doi | |
| 035 | |a (DE-627)1912165775 | ||
| 035 | |a (DE-599)KXP1912165775 | ||
| 035 | |a (OCoLC)1528015279 | ||
| 040 | |a DE-627 |b ger |c DE-627 |e rda | ||
| 041 | |a eng | ||
| 084 | |a 29 |2 sdnb | ||
| 100 | 1 | |a Cao, Yalong |d 1988- |e VerfasserIn |0 (DE-588)1350875716 |0 (DE-627)1912166550 |4 aut | |
| 245 | 1 | 0 | |a Stable pairs and Gopakumar-Vafa type invariants on holomorphic symplectic 4-folds |c Yalong Cao, Georg Oberdieck, Yukinobu Toda |
| 264 | 1 | |c 29 October 2022 | |
| 300 | |a 44 | ||
| 336 | |a Text |b txt |2 rdacontent | ||
| 337 | |a Computermedien |b c |2 rdamedia | ||
| 338 | |a Online-Ressource |b cr |2 rdacarrier | ||
| 500 | |a Gesehen am 12.12.2024 | ||
| 520 | |a As an analogy to Gopakumar-Vafa conjecture on Calabi-Yau 3-folds, Klemm-Pandharipande defined Gopakumar-Vafa type invariants of a Calabi-Yau 4-fold X using Gromov-Witten theory. When X is holomorphic symplectic, Gromov-Witten invariants vanish and one can consider the corresponding reduced theory. In a companion work, we propose a definition of Gopakumar-Vafa type invariants for such a reduced theory. In this paper, we give them a sheaf theoretic interpretation via moduli spaces of stable pairs. | ||
| 650 | 4 | |a Gopakumar-Vafa type invariants | |
| 650 | 4 | |a Holomorphic symplectic 4-folds | |
| 650 | 4 | |a Stable pairs | |
| 700 | 1 | |a Oberdieck, Georg |d 1988- |e VerfasserIn |0 (DE-588)1081631104 |0 (DE-627)846374161 |0 (DE-576)454645198 |4 aut | |
| 700 | 1 | |a Toda, Yukinobu |e VerfasserIn |0 (DE-588)1337567361 |0 (DE-627)1897317921 |4 aut | |
| 773 | 0 | 8 | |i Enthalten in |t Advances in mathematics |d Amsterdam [u.a.] : Elsevier, 1961 |g 408(2022), B, Artikel-ID 108605, Seite 1-44 |h Online-Ressource |w (DE-627)268759200 |w (DE-600)1472893-X |w (DE-576)103373292 |x 1090-2082 |7 nnas |a Stable pairs and Gopakumar-Vafa type invariants on holomorphic symplectic 4-folds |
| 773 | 1 | 8 | |g volume:408 |g year:2022 |g number:B |g elocationid:108605 |g pages:1-44 |g extent:44 |a Stable pairs and Gopakumar-Vafa type invariants on holomorphic symplectic 4-folds |
| 856 | 4 | 0 | |u https://doi.org/10.1016/j.aim.2022.108605 |x Verlag |x Resolving-System |z lizenzpflichtig |3 Volltext |
| 856 | 4 | 0 | |u https://www.sciencedirect.com/science/article/pii/S0001870822004224 |x Verlag |z lizenzpflichtig |3 Volltext |
| 951 | |a AR | ||
| 992 | |a 20241212 | ||
| 993 | |a Article | ||
| 994 | |a 2022 | ||
| 998 | |g 1081631104 |a Oberdieck, Georg |m 1081631104:Oberdieck, Georg |p 2 | ||
| 999 | |a KXP-PPN1912165775 |e 4634970791 | ||
| BIB | |a Y | ||
| SER | |a journal | ||
| JSO | |a {"relHost":[{"id":{"issn":["1090-2082"],"eki":["268759200"],"zdb":["1472893-X"]},"pubHistory":["1.1961/65(1965) - 231.2012; Vol. 232.2013 -"],"type":{"bibl":"periodical","media":"Online-Ressource"},"part":{"issue":"B","volume":"408","pages":"1-44","extent":"44","year":"2022","text":"408(2022), B, Artikel-ID 108605, Seite 1-44"},"recId":"268759200","note":["Gesehen am 14.09.2020"],"origin":[{"publisherPlace":"Amsterdam [u.a.] ; New York, NY [u.a.] ; Orlando, Fla. ; Brugge ; San Diego, Calif. [u.a.]","dateIssuedKey":"1961","publisher":"Elsevier ; Academic Press ; Academic Press ; Academic Press ; Acad. Press","dateIssuedDisp":"1961-"}],"physDesc":[{"extent":"Online-Ressource"}],"language":["eng"],"disp":"Stable pairs and Gopakumar-Vafa type invariants on holomorphic symplectic 4-foldsAdvances in mathematics","title":[{"title_sort":"Advances in mathematics","title":"Advances in mathematics"}]}],"name":{"displayForm":["Yalong Cao, Georg Oberdieck, Yukinobu Toda"]},"id":{"eki":["1912165775"],"doi":["10.1016/j.aim.2022.108605"]},"origin":[{"dateIssuedDisp":"29 October 2022","dateIssuedKey":"2022"}],"physDesc":[{"extent":"44 S."}],"language":["eng"],"person":[{"display":"Cao, Yalong","given":"Yalong","roleDisplay":"VerfasserIn","role":"aut","family":"Cao"},{"role":"aut","roleDisplay":"VerfasserIn","given":"Georg","display":"Oberdieck, Georg","family":"Oberdieck"},{"display":"Toda, Yukinobu","given":"Yukinobu","roleDisplay":"VerfasserIn","role":"aut","family":"Toda"}],"title":[{"title_sort":"Stable pairs and Gopakumar-Vafa type invariants on holomorphic symplectic 4-folds","title":"Stable pairs and Gopakumar-Vafa type invariants on holomorphic symplectic 4-folds"}],"type":{"bibl":"article-journal","media":"Online-Ressource"},"recId":"1912165775","note":["Gesehen am 12.12.2024"]} | ||
| SRT | |a CAOYALONGOSTABLEPAIR2920 | ||