Equivariant categories of symplectic surfaces and fixed loci of Bridgeland moduli spaces

Given an action of a finite group G on the derived category of a smooth projective variety X, we relate the fixed loci of the induced G-action on moduli spaces of stable objects in Db(Coh(X)) with moduli spaces of stable objects in the equivariant category Db(Coh(X))G. As an application, we obtain a c...

Full description

Saved in:
Bibliographic Details
Main Authors: Beckmann, Thorsten (Author) , Oberdieck, Georg (Author)
Format: Article (Journal)
Language:English
Published: 2022
In: Algebraic geometry
Year: 2022, Volume: 9, Issue: 4, Pages: 400-442
ISSN:2313-1691
DOI:10.14231/AG-2022-012
Online Access:Verlag, lizenzpflichtig, Volltext: https://doi.org/10.14231/AG-2022-012
Verlag, lizenzpflichtig, Volltext: http://content.algebraicgeometry.nl/2022-4/2022-4-012.pdf
Get full text
Author Notes:Thorsten Beckmann and Georg Oberdieck
Description
Summary:Given an action of a finite group G on the derived category of a smooth projective variety X, we relate the fixed loci of the induced G-action on moduli spaces of stable objects in Db(Coh(X)) with moduli spaces of stable objects in the equivariant category Db(Coh(X))G. As an application, we obtain a criterion for the equivariant category of a symplectic action on the derived category of a symplectic surface to be equivalent to the derived category of a surface. This generalizes the derived McKay correspondence and yields a general framework for describing fixed loci of symplectic group actions on moduli spaces of stable objects on symplectic surfaces.
Item Description:Gesehen am 12.12.2024
Physical Description:Online Resource
ISSN:2313-1691
DOI:10.14231/AG-2022-012