Equivariant categories of symplectic surfaces and fixed loci of Bridgeland moduli spaces

Given an action of a finite group G on the derived category of a smooth projective variety X, we relate the fixed loci of the induced G-action on moduli spaces of stable objects in Db(Coh(X)) with moduli spaces of stable objects in the equivariant category Db(Coh(X))G. As an application, we obtain a c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Beckmann, Thorsten (VerfasserIn) , Oberdieck, Georg (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: 2022
In: Algebraic geometry
Year: 2022, Jahrgang: 9, Heft: 4, Pages: 400-442
ISSN:2313-1691
DOI:10.14231/AG-2022-012
Online-Zugang:Verlag, lizenzpflichtig, Volltext: https://doi.org/10.14231/AG-2022-012
Verlag, lizenzpflichtig, Volltext: http://content.algebraicgeometry.nl/2022-4/2022-4-012.pdf
Volltext
Verfasserangaben:Thorsten Beckmann and Georg Oberdieck
Beschreibung
Zusammenfassung:Given an action of a finite group G on the derived category of a smooth projective variety X, we relate the fixed loci of the induced G-action on moduli spaces of stable objects in Db(Coh(X)) with moduli spaces of stable objects in the equivariant category Db(Coh(X))G. As an application, we obtain a criterion for the equivariant category of a symplectic action on the derived category of a symplectic surface to be equivalent to the derived category of a surface. This generalizes the derived McKay correspondence and yields a general framework for describing fixed loci of symplectic group actions on moduli spaces of stable objects on symplectic surfaces.
Beschreibung:Gesehen am 12.12.2024
Beschreibung:Online Resource
ISSN:2313-1691
DOI:10.14231/AG-2022-012