Equivariant categories of symplectic surfaces and fixed loci of Bridgeland moduli spaces
Given an action of a finite group G on the derived category of a smooth projective variety X, we relate the fixed loci of the induced G-action on moduli spaces of stable objects in Db(Coh(X)) with moduli spaces of stable objects in the equivariant category Db(Coh(X))G. As an application, we obtain a c...
Gespeichert in:
| Hauptverfasser: | , |
|---|---|
| Dokumenttyp: | Article (Journal) |
| Sprache: | Englisch |
| Veröffentlicht: |
2022
|
| In: |
Algebraic geometry
Year: 2022, Jahrgang: 9, Heft: 4, Pages: 400-442 |
| ISSN: | 2313-1691 |
| DOI: | 10.14231/AG-2022-012 |
| Online-Zugang: | Verlag, lizenzpflichtig, Volltext: https://doi.org/10.14231/AG-2022-012 Verlag, lizenzpflichtig, Volltext: http://content.algebraicgeometry.nl/2022-4/2022-4-012.pdf |
| Verfasserangaben: | Thorsten Beckmann and Georg Oberdieck |
MARC
| LEADER | 00000caa a2200000 c 4500 | ||
|---|---|---|---|
| 001 | 1912167042 | ||
| 003 | DE-627 | ||
| 005 | 20250716215431.0 | ||
| 007 | cr uuu---uuuuu | ||
| 008 | 241212s2022 xx |||||o 00| ||eng c | ||
| 024 | 7 | |a 10.14231/AG-2022-012 |2 doi | |
| 035 | |a (DE-627)1912167042 | ||
| 035 | |a (DE-599)KXP1912167042 | ||
| 035 | |a (OCoLC)1528015107 | ||
| 040 | |a DE-627 |b ger |c DE-627 |e rda | ||
| 041 | |a eng | ||
| 084 | |a 27 |2 sdnb | ||
| 100 | 1 | |a Beckmann, Thorsten |e VerfasserIn |0 (DE-588)1171942222 |0 (DE-627)1040802761 |0 (DE-576)513921451 |4 aut | |
| 245 | 1 | 0 | |a Equivariant categories of symplectic surfaces and fixed loci of Bridgeland moduli spaces |c Thorsten Beckmann and Georg Oberdieck |
| 264 | 1 | |c 2022 | |
| 300 | |a 43 | ||
| 336 | |a Text |b txt |2 rdacontent | ||
| 337 | |a Computermedien |b c |2 rdamedia | ||
| 338 | |a Online-Ressource |b cr |2 rdacarrier | ||
| 500 | |a Gesehen am 12.12.2024 | ||
| 520 | |a Given an action of a finite group G on the derived category of a smooth projective variety X, we relate the fixed loci of the induced G-action on moduli spaces of stable objects in Db(Coh(X)) with moduli spaces of stable objects in the equivariant category Db(Coh(X))G. As an application, we obtain a criterion for the equivariant category of a symplectic action on the derived category of a symplectic surface to be equivalent to the derived category of a surface. This generalizes the derived McKay correspondence and yields a general framework for describing fixed loci of symplectic group actions on moduli spaces of stable objects on symplectic surfaces. | ||
| 700 | 1 | |a Oberdieck, Georg |d 1988- |e VerfasserIn |0 (DE-588)1081631104 |0 (DE-627)846374161 |0 (DE-576)454645198 |4 aut | |
| 773 | 0 | 8 | |i Enthalten in |t Algebraic geometry |d Amsterdam, The Netherlands : Foundation Compositio Mathematica, 2014 |g 9(2022), 4, Seite 400-442 |h Online-Ressource |w (DE-627)788842145 |w (DE-600)2774772-4 |w (DE-576)408411538 |x 2313-1691 |7 nnas |a Equivariant categories of symplectic surfaces and fixed loci of Bridgeland moduli spaces |
| 773 | 1 | 8 | |g volume:9 |g year:2022 |g number:4 |g pages:400-442 |g extent:43 |a Equivariant categories of symplectic surfaces and fixed loci of Bridgeland moduli spaces |
| 856 | 4 | 0 | |u https://doi.org/10.14231/AG-2022-012 |x Verlag |x Resolving-System |z lizenzpflichtig |3 Volltext |
| 856 | 4 | 0 | |u http://content.algebraicgeometry.nl/2022-4/2022-4-012.pdf |x Verlag |z lizenzpflichtig |3 Volltext |
| 951 | |a AR | ||
| 992 | |a 20241212 | ||
| 993 | |a Article | ||
| 994 | |a 2022 | ||
| 998 | |g 1081631104 |a Oberdieck, Georg |m 1081631104:Oberdieck, Georg |p 2 |y j | ||
| 999 | |a KXP-PPN1912167042 |e 4634973286 | ||
| BIB | |a Y | ||
| SER | |a journal | ||
| JSO | |a {"language":["eng"],"person":[{"given":"Thorsten","role":"aut","roleDisplay":"VerfasserIn","display":"Beckmann, Thorsten","family":"Beckmann"},{"display":"Oberdieck, Georg","given":"Georg","roleDisplay":"VerfasserIn","role":"aut","family":"Oberdieck"}],"relHost":[{"title":[{"title_sort":"Algebraic geometry","title":"Algebraic geometry"}],"origin":[{"dateIssuedKey":"2014","publisherPlace":"Amsterdam, The Netherlands","dateIssuedDisp":"2014-","publisher":"Foundation Compositio Mathematica"}],"name":{"displayForm":["Foundation Compositio Mathematica"]},"physDesc":[{"extent":"Online-Ressource"}],"disp":"Equivariant categories of symplectic surfaces and fixed loci of Bridgeland moduli spacesAlgebraic geometry","language":["eng"],"id":{"eki":["788842145"],"zdb":["2774772-4"],"issn":["2313-1691"]},"note":["Gesehen am 13.10.2016"],"part":{"issue":"4","volume":"9","extent":"43","year":"2022","pages":"400-442","text":"9(2022), 4, Seite 400-442"},"recId":"788842145","pubHistory":["1.2014 -"],"type":{"media":"Online-Ressource","bibl":"periodical"}}],"name":{"displayForm":["Thorsten Beckmann and Georg Oberdieck"]},"id":{"doi":["10.14231/AG-2022-012"],"eki":["1912167042"]},"origin":[{"dateIssuedKey":"2022","dateIssuedDisp":"2022"}],"physDesc":[{"extent":"43 S."}],"title":[{"title":"Equivariant categories of symplectic surfaces and fixed loci of Bridgeland moduli spaces","title_sort":"Equivariant categories of symplectic surfaces and fixed loci of Bridgeland moduli spaces"}],"type":{"media":"Online-Ressource","bibl":"article-journal"},"recId":"1912167042","note":["Gesehen am 12.12.2024"]} | ||
| SRT | |a BECKMANNTHEQUIVARIAN2022 | ||