Gromov-Witten theory and Noether-Lefschetz theory for holomorphic-symplectic varieties

We use Noether-Lefschetz theory to study the reduced Gromov-Witten invariants of a holomorphic-symplectic variety of - - - - K3[n]K3[n]K3^{[n]} - - - -type. This yields strong evidence for a new conjectural formula that expresses Gromov-Witten invariants of this geometry for arbitrary classes...

Full description

Saved in:
Bibliographic Details
Main Authors: Oberdieck, Georg (Author) , Song, Jieao (Author)
Format: Article (Journal)
Language:English
Published: 04 April 2022
In: Forum of mathematics. Sigma
Year: 2022, Volume: 10, Pages: 1-46
ISSN:2050-5094
DOI:10.1017/fms.2022.10
Online Access:Verlag, kostenfrei, Volltext: https://doi.org/10.1017/fms.2022.10
Verlag, kostenfrei, Volltext: https://www.cambridge.org/core/journals/forum-of-mathematics-sigma/article/gromovwitten-theory-and-noetherlefschetz-theory-for-holomorphicsymplectic-varieties/254A0340D7FE477467F5FF74CC865977
Get full text
Author Notes:Georg Oberdieck and with an appendix by Jieao Song
Description
Summary:We use Noether-Lefschetz theory to study the reduced Gromov-Witten invariants of a holomorphic-symplectic variety of - - - - K3[n]K3[n]K3^{[n]} - - - -type. This yields strong evidence for a new conjectural formula that expresses Gromov-Witten invariants of this geometry for arbitrary classes in terms of primitive classes. The formula generalizes an earlier conjecture by Pandharipande and the author for K3 surfaces. Using Gromov-Witten techniques, we also determine the generating series of Noether-Lefschetz numbers of a general pencil of Debarre-Voisin varieties. This reproves and extends a result of Debarre, Han, O’Grady and Voisin on Hassett-Looijenga-Shah (HLS) divisors on the moduli space of Debarre-Voisin fourfolds.
Item Description:Gesehen am 12.12.2024
Physical Description:Online Resource
ISSN:2050-5094
DOI:10.1017/fms.2022.10