Gromov-Witten theory and Noether-Lefschetz theory for holomorphic-symplectic varieties
We use Noether-Lefschetz theory to study the reduced Gromov-Witten invariants of a holomorphic-symplectic variety of - - - - K3[n]K3[n]K3^{[n]} - - - -type. This yields strong evidence for a new conjectural formula that expresses Gromov-Witten invariants of this geometry for arbitrary classes...
Gespeichert in:
| Hauptverfasser: | , |
|---|---|
| Dokumenttyp: | Article (Journal) |
| Sprache: | Englisch |
| Veröffentlicht: |
04 April 2022
|
| In: |
Forum of mathematics. Sigma
Year: 2022, Jahrgang: 10, Pages: 1-46 |
| ISSN: | 2050-5094 |
| DOI: | 10.1017/fms.2022.10 |
| Online-Zugang: | Verlag, kostenfrei, Volltext: https://doi.org/10.1017/fms.2022.10 Verlag, kostenfrei, Volltext: https://www.cambridge.org/core/journals/forum-of-mathematics-sigma/article/gromovwitten-theory-and-noetherlefschetz-theory-for-holomorphicsymplectic-varieties/254A0340D7FE477467F5FF74CC865977 |
| Verfasserangaben: | Georg Oberdieck and with an appendix by Jieao Song |
MARC
| LEADER | 00000caa a2200000 c 4500 | ||
|---|---|---|---|
| 001 | 1912175401 | ||
| 003 | DE-627 | ||
| 005 | 20250716215506.0 | ||
| 007 | cr uuu---uuuuu | ||
| 008 | 241212s2022 xx |||||o 00| ||eng c | ||
| 024 | 7 | |a 10.1017/fms.2022.10 |2 doi | |
| 035 | |a (DE-627)1912175401 | ||
| 035 | |a (DE-599)KXP1912175401 | ||
| 035 | |a (OCoLC)1528015151 | ||
| 040 | |a DE-627 |b ger |c DE-627 |e rda | ||
| 041 | |a eng | ||
| 084 | |a 27 |2 sdnb | ||
| 100 | 1 | |a Oberdieck, Georg |d 1988- |e VerfasserIn |0 (DE-588)1081631104 |0 (DE-627)846374161 |0 (DE-576)454645198 |4 aut | |
| 245 | 1 | 0 | |a Gromov-Witten theory and Noether-Lefschetz theory for holomorphic-symplectic varieties |c Georg Oberdieck and with an appendix by Jieao Song |
| 264 | 1 | |c 04 April 2022 | |
| 300 | |a 46 | ||
| 336 | |a Text |b txt |2 rdacontent | ||
| 337 | |a Computermedien |b c |2 rdamedia | ||
| 338 | |a Online-Ressource |b cr |2 rdacarrier | ||
| 500 | |a Gesehen am 12.12.2024 | ||
| 505 | 8 | 0 | |t Enthält außerdem: Appendix C. Geometry of a general singular Debarre–Voisin fourfold |r by Jieao Song |
| 520 | |a We use Noether-Lefschetz theory to study the reduced Gromov-Witten invariants of a holomorphic-symplectic variety of - - - - K3[n]K3[n]K3^{[n]} - - - -type. This yields strong evidence for a new conjectural formula that expresses Gromov-Witten invariants of this geometry for arbitrary classes in terms of primitive classes. The formula generalizes an earlier conjecture by Pandharipande and the author for K3 surfaces. Using Gromov-Witten techniques, we also determine the generating series of Noether-Lefschetz numbers of a general pencil of Debarre-Voisin varieties. This reproves and extends a result of Debarre, Han, O’Grady and Voisin on Hassett-Looijenga-Shah (HLS) divisors on the moduli space of Debarre-Voisin fourfolds. | ||
| 650 | 4 | |a 14J28 | |
| 650 | 4 | |a 14J42 | |
| 650 | 4 | |a 14N35 | |
| 700 | 1 | |a Song, Jieao |e VerfasserIn |0 (DE-588)1350872830 |0 (DE-627)1912163578 |4 aut | |
| 773 | 0 | 8 | |i Enthalten in |t Forum of mathematics. Sigma |d Cambridge : Cambridge Univ. Press, 2013 |g 10(2022), Artikel-ID e21, Seite 1-46 |h Online-Ressource |w (DE-627)751861081 |w (DE-600)2723154-9 |w (DE-576)390372471 |x 2050-5094 |7 nnas |a Gromov-Witten theory and Noether-Lefschetz theory for holomorphic-symplectic varieties |
| 773 | 1 | 8 | |g volume:10 |g year:2022 |g elocationid:e21 |g pages:1-46 |g extent:46 |a Gromov-Witten theory and Noether-Lefschetz theory for holomorphic-symplectic varieties |
| 856 | 4 | 0 | |u https://doi.org/10.1017/fms.2022.10 |x Verlag |x Resolving-System |z kostenfrei |3 Volltext |
| 856 | 4 | 0 | |u https://www.cambridge.org/core/journals/forum-of-mathematics-sigma/article/gromovwitten-theory-and-noetherlefschetz-theory-for-holomorphicsymplectic-varieties/254A0340D7FE477467F5FF74CC865977 |x Verlag |z kostenfrei |3 Volltext |
| 951 | |a AR | ||
| 992 | |a 20241212 | ||
| 993 | |a Article | ||
| 994 | |a 2022 | ||
| 998 | |g 1081631104 |a Oberdieck, Georg |m 1081631104:Oberdieck, Georg |p 1 |x j | ||
| 999 | |a KXP-PPN1912175401 |e 4635020703 | ||
| BIB | |a Y | ||
| SER | |a journal | ||
| JSO | |a {"person":[{"display":"Oberdieck, Georg","role":"aut","roleDisplay":"VerfasserIn","given":"Georg","family":"Oberdieck"},{"display":"Song, Jieao","given":"Jieao","roleDisplay":"VerfasserIn","role":"aut","family":"Song"}],"language":["eng"],"physDesc":[{"extent":"46 S."}],"name":{"displayForm":["Georg Oberdieck and with an appendix by Jieao Song"]},"id":{"eki":["1912175401"],"doi":["10.1017/fms.2022.10"]},"origin":[{"dateIssuedDisp":"04 April 2022","dateIssuedKey":"2022"}],"relHost":[{"id":{"issn":["2050-5094"],"zdb":["2723154-9"],"eki":["751861081"]},"titleAlt":[{"title":"Forum of mathematics / Sigma"}],"recId":"751861081","part":{"pages":"1-46","year":"2022","extent":"46","text":"10(2022), Artikel-ID e21, Seite 1-46","volume":"10"},"note":["Gesehen am 22.04.2024"],"type":{"media":"Online-Ressource","bibl":"periodical"},"pubHistory":["1.2013 -"],"title":[{"partname":"Sigma","title_sort":"Forum of mathematics","title":"Forum of mathematics"}],"disp":"Gromov-Witten theory and Noether-Lefschetz theory for holomorphic-symplectic varietiesForum of mathematics. Sigma","language":["eng"],"physDesc":[{"extent":"Online-Ressource"}],"origin":[{"publisherPlace":"Cambridge","dateIssuedKey":"2013","dateIssuedDisp":"2013-","publisher":"Cambridge Univ. Press"}]}],"title":[{"title":"Gromov-Witten theory and Noether-Lefschetz theory for holomorphic-symplectic varieties","title_sort":"Gromov-Witten theory and Noether-Lefschetz theory for holomorphic-symplectic varieties"}],"type":{"media":"Online-Ressource","bibl":"article-journal"},"note":["Gesehen am 12.12.2024"],"recId":"1912175401"} | ||
| SRT | |a OBERDIECKGGROMOVWITT0420 | ||