Gromov-Witten theory and Noether-Lefschetz theory for holomorphic-symplectic varieties

We use Noether-Lefschetz theory to study the reduced Gromov-Witten invariants of a holomorphic-symplectic variety of - - - - K3[n]K3[n]K3^{[n]} - - - -type. This yields strong evidence for a new conjectural formula that expresses Gromov-Witten invariants of this geometry for arbitrary classes...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Oberdieck, Georg (VerfasserIn) , Song, Jieao (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: 04 April 2022
In: Forum of mathematics. Sigma
Year: 2022, Jahrgang: 10, Pages: 1-46
ISSN:2050-5094
DOI:10.1017/fms.2022.10
Online-Zugang:Verlag, kostenfrei, Volltext: https://doi.org/10.1017/fms.2022.10
Verlag, kostenfrei, Volltext: https://www.cambridge.org/core/journals/forum-of-mathematics-sigma/article/gromovwitten-theory-and-noetherlefschetz-theory-for-holomorphicsymplectic-varieties/254A0340D7FE477467F5FF74CC865977
Volltext
Verfasserangaben:Georg Oberdieck and with an appendix by Jieao Song

MARC

LEADER 00000caa a2200000 c 4500
001 1912175401
003 DE-627
005 20250716215506.0
007 cr uuu---uuuuu
008 241212s2022 xx |||||o 00| ||eng c
024 7 |a 10.1017/fms.2022.10  |2 doi 
035 |a (DE-627)1912175401 
035 |a (DE-599)KXP1912175401 
035 |a (OCoLC)1528015151 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 27  |2 sdnb 
100 1 |a Oberdieck, Georg  |d 1988-  |e VerfasserIn  |0 (DE-588)1081631104  |0 (DE-627)846374161  |0 (DE-576)454645198  |4 aut 
245 1 0 |a Gromov-Witten theory and Noether-Lefschetz theory for holomorphic-symplectic varieties  |c Georg Oberdieck and with an appendix by Jieao Song 
264 1 |c 04 April 2022 
300 |a 46 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Gesehen am 12.12.2024 
505 8 0 |t Enthält außerdem: Appendix C. Geometry of a general singular Debarre–Voisin fourfold  |r by Jieao Song 
520 |a We use Noether-Lefschetz theory to study the reduced Gromov-Witten invariants of a holomorphic-symplectic variety of - - - - K3[n]K3[n]K3^{[n]} - - - -type. This yields strong evidence for a new conjectural formula that expresses Gromov-Witten invariants of this geometry for arbitrary classes in terms of primitive classes. The formula generalizes an earlier conjecture by Pandharipande and the author for K3 surfaces. Using Gromov-Witten techniques, we also determine the generating series of Noether-Lefschetz numbers of a general pencil of Debarre-Voisin varieties. This reproves and extends a result of Debarre, Han, O’Grady and Voisin on Hassett-Looijenga-Shah (HLS) divisors on the moduli space of Debarre-Voisin fourfolds. 
650 4 |a 14J28 
650 4 |a 14J42 
650 4 |a 14N35 
700 1 |a Song, Jieao  |e VerfasserIn  |0 (DE-588)1350872830  |0 (DE-627)1912163578  |4 aut 
773 0 8 |i Enthalten in  |t Forum of mathematics. Sigma  |d Cambridge : Cambridge Univ. Press, 2013  |g 10(2022), Artikel-ID e21, Seite 1-46  |h Online-Ressource  |w (DE-627)751861081  |w (DE-600)2723154-9  |w (DE-576)390372471  |x 2050-5094  |7 nnas  |a Gromov-Witten theory and Noether-Lefschetz theory for holomorphic-symplectic varieties 
773 1 8 |g volume:10  |g year:2022  |g elocationid:e21  |g pages:1-46  |g extent:46  |a Gromov-Witten theory and Noether-Lefschetz theory for holomorphic-symplectic varieties 
856 4 0 |u https://doi.org/10.1017/fms.2022.10  |x Verlag  |x Resolving-System  |z kostenfrei  |3 Volltext 
856 4 0 |u https://www.cambridge.org/core/journals/forum-of-mathematics-sigma/article/gromovwitten-theory-and-noetherlefschetz-theory-for-holomorphicsymplectic-varieties/254A0340D7FE477467F5FF74CC865977  |x Verlag  |z kostenfrei  |3 Volltext 
951 |a AR 
992 |a 20241212 
993 |a Article 
994 |a 2022 
998 |g 1081631104  |a Oberdieck, Georg  |m 1081631104:Oberdieck, Georg  |p 1  |x j 
999 |a KXP-PPN1912175401  |e 4635020703 
BIB |a Y 
SER |a journal 
JSO |a {"person":[{"display":"Oberdieck, Georg","role":"aut","roleDisplay":"VerfasserIn","given":"Georg","family":"Oberdieck"},{"display":"Song, Jieao","given":"Jieao","roleDisplay":"VerfasserIn","role":"aut","family":"Song"}],"language":["eng"],"physDesc":[{"extent":"46 S."}],"name":{"displayForm":["Georg Oberdieck and with an appendix by Jieao Song"]},"id":{"eki":["1912175401"],"doi":["10.1017/fms.2022.10"]},"origin":[{"dateIssuedDisp":"04 April 2022","dateIssuedKey":"2022"}],"relHost":[{"id":{"issn":["2050-5094"],"zdb":["2723154-9"],"eki":["751861081"]},"titleAlt":[{"title":"Forum of mathematics / Sigma"}],"recId":"751861081","part":{"pages":"1-46","year":"2022","extent":"46","text":"10(2022), Artikel-ID e21, Seite 1-46","volume":"10"},"note":["Gesehen am 22.04.2024"],"type":{"media":"Online-Ressource","bibl":"periodical"},"pubHistory":["1.2013 -"],"title":[{"partname":"Sigma","title_sort":"Forum of mathematics","title":"Forum of mathematics"}],"disp":"Gromov-Witten theory and Noether-Lefschetz theory for holomorphic-symplectic varietiesForum of mathematics. Sigma","language":["eng"],"physDesc":[{"extent":"Online-Ressource"}],"origin":[{"publisherPlace":"Cambridge","dateIssuedKey":"2013","dateIssuedDisp":"2013-","publisher":"Cambridge Univ. Press"}]}],"title":[{"title":"Gromov-Witten theory and Noether-Lefschetz theory for holomorphic-symplectic varieties","title_sort":"Gromov-Witten theory and Noether-Lefschetz theory for holomorphic-symplectic varieties"}],"type":{"media":"Online-Ressource","bibl":"article-journal"},"note":["Gesehen am 12.12.2024"],"recId":"1912175401"} 
SRT |a OBERDIECKGGROMOVWITT0420