Gromov-Witten theory of K3 surfaces and a Kaneko-Zagier equation for Jacobi forms

We prove the existence of quasi-Jacobi form solutions for an analogue of the Kaneko-Zagier differential equation for Jacobi forms. The transformation properties of the solutions under the Jacobi group are derived. A special feature of the solutions is the polynomial dependence of the index parameter...

Full description

Saved in:
Bibliographic Details
Main Authors: Ittersum, Jan-Willem van (Author) , Oberdieck, Georg (Author) , Pixton, Aaron C. (Author)
Format: Article (Journal)
Language:English
Published: 02 July 2021
In: Selecta mathematica
Year: 2021, Volume: 27, Issue: 4, Pages: 1-30
ISSN:1420-9020
DOI:10.1007/s00029-021-00673-y
Online Access:Resolving-System, kostenfrei, Volltext: https://doi.org/10.1007/s00029-021-00673-y
Verlag, kostenfrei, Volltext: https://link.springer.com/article/10.1007/s00029-021-00673-y
Get full text
Author Notes:Jan-Willem van Ittersum, Georg Oberdieck, Aaron Pixton
Description
Summary:We prove the existence of quasi-Jacobi form solutions for an analogue of the Kaneko-Zagier differential equation for Jacobi forms. The transformation properties of the solutions under the Jacobi group are derived. A special feature of the solutions is the polynomial dependence of the index parameter. The results yield an explicit conjectural description for all double ramification cycle integrals in the Gromov-Witten theory of K3 surfaces.
Item Description:Gesehen am 12.12.2024
Physical Description:Online Resource
ISSN:1420-9020
DOI:10.1007/s00029-021-00673-y