Gromov-Witten theory of K3 surfaces and a Kaneko-Zagier equation for Jacobi forms
We prove the existence of quasi-Jacobi form solutions for an analogue of the Kaneko-Zagier differential equation for Jacobi forms. The transformation properties of the solutions under the Jacobi group are derived. A special feature of the solutions is the polynomial dependence of the index parameter...
Saved in:
| Main Authors: | , , |
|---|---|
| Format: | Article (Journal) |
| Language: | English |
| Published: |
02 July 2021
|
| In: |
Selecta mathematica
Year: 2021, Volume: 27, Issue: 4, Pages: 1-30 |
| ISSN: | 1420-9020 |
| DOI: | 10.1007/s00029-021-00673-y |
| Online Access: | Resolving-System, kostenfrei, Volltext: https://doi.org/10.1007/s00029-021-00673-y Verlag, kostenfrei, Volltext: https://link.springer.com/article/10.1007/s00029-021-00673-y |
| Author Notes: | Jan-Willem van Ittersum, Georg Oberdieck, Aaron Pixton |
MARC
| LEADER | 00000caa a2200000 c 4500 | ||
|---|---|---|---|
| 001 | 1912180863 | ||
| 003 | DE-627 | ||
| 005 | 20250716215551.0 | ||
| 007 | cr uuu---uuuuu | ||
| 008 | 241212s2021 xx |||||o 00| ||eng c | ||
| 024 | 7 | |a 10.1007/s00029-021-00673-y |2 doi | |
| 035 | |a (DE-627)1912180863 | ||
| 035 | |a (DE-599)KXP1912180863 | ||
| 035 | |a (OCoLC)1528014990 | ||
| 040 | |a DE-627 |b ger |c DE-627 |e rda | ||
| 041 | |a eng | ||
| 084 | |a 27 |2 sdnb | ||
| 100 | 1 | |a Ittersum, Jan-Willem van |e VerfasserIn |0 (DE-588)135088538X |0 (DE-627)191218107X |4 aut | |
| 245 | 1 | 0 | |a Gromov-Witten theory of K3 surfaces and a Kaneko-Zagier equation for Jacobi forms |c Jan-Willem van Ittersum, Georg Oberdieck, Aaron Pixton |
| 264 | 1 | |c 02 July 2021 | |
| 300 | |a 30 | ||
| 336 | |a Text |b txt |2 rdacontent | ||
| 337 | |a Computermedien |b c |2 rdamedia | ||
| 338 | |a Online-Ressource |b cr |2 rdacarrier | ||
| 500 | |a Gesehen am 12.12.2024 | ||
| 520 | |a We prove the existence of quasi-Jacobi form solutions for an analogue of the Kaneko-Zagier differential equation for Jacobi forms. The transformation properties of the solutions under the Jacobi group are derived. A special feature of the solutions is the polynomial dependence of the index parameter. The results yield an explicit conjectural description for all double ramification cycle integrals in the Gromov-Witten theory of K3 surfaces. | ||
| 650 | 4 | |a 11F11 | |
| 650 | 4 | |a 11F50 | |
| 650 | 4 | |a 14J28 | |
| 650 | 4 | |a 14N35 | |
| 700 | 1 | |a Oberdieck, Georg |d 1988- |e VerfasserIn |0 (DE-588)1081631104 |0 (DE-627)846374161 |0 (DE-576)454645198 |4 aut | |
| 700 | 1 | |a Pixton, Aaron C. |d 1986- |e VerfasserIn |0 (DE-588)1137719052 |0 (DE-627)895080842 |0 (DE-576)491721145 |4 aut | |
| 773 | 0 | 8 | |i Enthalten in |t Selecta mathematica |d Basel [u.a.] : Birkhäuser, 1995 |g 27(2021), 4, Artikel-ID 64, Seite 1-30 |h Online-Ressource |w (DE-627)254638821 |w (DE-600)1462998-7 |w (DE-576)078589819 |x 1420-9020 |7 nnas |a Gromov-Witten theory of K3 surfaces and a Kaneko-Zagier equation for Jacobi forms |
| 773 | 1 | 8 | |g volume:27 |g year:2021 |g number:4 |g elocationid:64 |g pages:1-30 |g extent:30 |a Gromov-Witten theory of K3 surfaces and a Kaneko-Zagier equation for Jacobi forms |
| 856 | 4 | 0 | |u https://doi.org/10.1007/s00029-021-00673-y |x Resolving-System |x Verlag |z kostenfrei |3 Volltext |
| 856 | 4 | 0 | |u https://link.springer.com/article/10.1007/s00029-021-00673-y |x Verlag |z kostenfrei |3 Volltext |
| 951 | |a AR | ||
| 992 | |a 20241212 | ||
| 993 | |a Article | ||
| 994 | |a 2021 | ||
| 998 | |g 1081631104 |a Oberdieck, Georg |m 1081631104:Oberdieck, Georg |p 2 | ||
| 999 | |a KXP-PPN1912180863 |e 4635056511 | ||
| BIB | |a Y | ||
| SER | |a journal | ||
| JSO | |a {"title":[{"title":"Gromov-Witten theory of K3 surfaces and a Kaneko-Zagier equation for Jacobi forms","title_sort":"Gromov-Witten theory of K3 surfaces and a Kaneko-Zagier equation for Jacobi forms"}],"id":{"eki":["1912180863"],"doi":["10.1007/s00029-021-00673-y"]},"name":{"displayForm":["Jan-Willem van Ittersum, Georg Oberdieck, Aaron Pixton"]},"origin":[{"dateIssuedKey":"2021","dateIssuedDisp":"02 July 2021"}],"physDesc":[{"extent":"30 S."}],"relHost":[{"language":["eng"],"disp":"Gromov-Witten theory of K3 surfaces and a Kaneko-Zagier equation for Jacobi formsSelecta mathematica","origin":[{"dateIssuedKey":"1995","publisherPlace":"Basel [u.a.] ; Berlin","publisher":"Birkhäuser","dateIssuedDisp":"1995-"}],"physDesc":[{"extent":"Online-Ressource"}],"title":[{"subtitle":"SM","title":"Selecta mathematica","title_sort":"Selecta mathematica"}],"type":{"media":"Online-Ressource","bibl":"periodical"},"pubHistory":["N.S. 1.1995 -"],"note":["Gesehen am 02.12.05"],"part":{"text":"27(2021), 4, Artikel-ID 64, Seite 1-30","pages":"1-30","year":"2021","extent":"30","volume":"27","issue":"4"},"recId":"254638821","id":{"issn":["1420-9020"],"eki":["254638821"],"zdb":["1462998-7"]},"titleAlt":[{"title":"SM"}]}],"person":[{"family":"Ittersum","display":"Ittersum, Jan-Willem van","given":"Jan-Willem van","roleDisplay":"VerfasserIn","role":"aut"},{"given":"Georg","role":"aut","roleDisplay":"VerfasserIn","display":"Oberdieck, Georg","family":"Oberdieck"},{"family":"Pixton","given":"Aaron C.","roleDisplay":"VerfasserIn","role":"aut","display":"Pixton, Aaron C."}],"language":["eng"],"note":["Gesehen am 12.12.2024"],"recId":"1912180863","type":{"bibl":"article-journal","media":"Online-Ressource"}} | ||
| SRT | |a ITTERSUMJAGROMOVWITT0220 | ||