Horospherical dynamics in invariant subvarieties

We consider the horospherical foliation on any invariant subvariety in the moduli space of translation surfaces. This foliation can be described dynamically as the strong unstable foliation for the geodesic flow on the invariant subvariety, and geometrically, it is induced by the canonical splitting...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Smillie, John (VerfasserIn) , Smillie, Peter (VerfasserIn) , Weiss, Barak (VerfasserIn) , Ygouf, Florent (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: August 2024
In: Advances in mathematics
Year: 2024, Jahrgang: 451, Pages: 1-54
ISSN:1090-2082
DOI:10.1016/j.aim.2024.109783
Online-Zugang:Verlag, kostenfrei, Volltext: https://doi.org/10.1016/j.aim.2024.109783
Verlag, kostenfrei, Volltext: https://www.sciencedirect.com/science/article/pii/S0001870824002986
Volltext
Verfasserangaben:John Smillie, Peter Smillie, Barak Weiss, Florent Ygouf
Beschreibung
Zusammenfassung:We consider the horospherical foliation on any invariant subvariety in the moduli space of translation surfaces. This foliation can be described dynamically as the strong unstable foliation for the geodesic flow on the invariant subvariety, and geometrically, it is induced by the canonical splitting of C-valued cohomology into its real and imaginary parts. We define a natural volume form on the leaves of this foliation, and define horospherical measures as those measures whose conditional measures on leaves are given by the volume form. We show that the natural measures on invariant subvarieties, and in particular, the Masur-Veech measures on strata, are horospherical. We show that these measures are the unique horospherical measures giving zero mass to the set of surfaces with horizontal saddle connections, extending work of Lindenstrauss-Mirzakhani and Hamenstädt for principal strata. We describe all the leaf closures for the horospherical foliation.
Beschreibung:Online verfügbar 21. Juni 2024, Artikelversion 21. Juni 2024
Gesehen am 13.12.2024
Beschreibung:Online Resource
ISSN:1090-2082
DOI:10.1016/j.aim.2024.109783