Unifying ordinary and null memory

Based on a recently proposed reinterpretation of gravitational wave memory that builds up on the definition of gravitational waves pioneered by Isaacson, we provide a unifying framework to derive both ordinary and null memory from a single well-defined equation at leading order in the asymptotic exp...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Heisenberg, Lavinia (VerfasserIn) , Xu, Guangzi (VerfasserIn) , Zosso, Jann (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: 2024
In: Journal of cosmology and astroparticle physics
Year: 2024, Heft: 5, Pages: 1-31
ISSN:1475-7516
DOI:10.1088/1475-7516/2024/05/119
Online-Zugang:Verlag, lizenzpflichtig, Volltext: https://dx.doi.org/10.1088/1475-7516/2024/05/119
Volltext
Verfasserangaben:Lavinia Heisenberg, Guangzi Xu and Jann Zosso
Beschreibung
Zusammenfassung:Based on a recently proposed reinterpretation of gravitational wave memory that builds up on the definition of gravitational waves pioneered by Isaacson, we provide a unifying framework to derive both ordinary and null memory from a single well-defined equation at leading order in the asymptotic expansion. This allows us to formulate a memory equation that is valid for any unbound asymptotic energy-flux that preserves local Lorentz invariance. Using Horndeski gravity as a concrete example metric theory with an additional potentially massive scalar degree of freedom in the gravitational sector, the general memory formula is put into practice by presenting the first account of the memory correction sourced by the emission of massive field waves. Throughout the work, physical degrees of freedom are identified by constructing manifestly gauge invariant perturbation variables within an SVT decomposition on top of the asymptotic Minkowski background, which will in particular prove useful in future studies of gravitational wave memory within vector tensor theories.
Beschreibung:Online veröffentlicht: 29. Mai 2024
Gesehen am 08.01.2025
Beschreibung:Online Resource
ISSN:1475-7516
DOI:10.1088/1475-7516/2024/05/119