Reduced Donaldson-Thomas invariants and the ring of dual numbers

Let A be an abelian variety. We introduce A-equivariant Grothendieck rings and A-equivariant motivic Hall algebras, and endow them with natural integration maps to the ring of dual numbers. The construction allows a systematic treatment of reduced Donaldson-Thomas (DT) invariants by Hall algebra tec...

Full description

Saved in:
Bibliographic Details
Main Authors: Oberdieck, Georg (Author) , Shen, Junliang (Author)
Format: Article (Journal)
Language:English
Published: January 2019
In: Proceedings of the London Mathematical Society
Year: 2019, Volume: 118, Issue: 1, Pages: 191-220
ISSN:1460-244X
DOI:10.1112/plms.12178
Online Access:Verlag, lizenzpflichtig, Volltext: https://doi.org/10.1112/plms.12178
Verlag, lizenzpflichtig, Volltext: https://onlinelibrary.wiley.com/doi/abs/10.1112/plms.12178
Get full text
Author Notes:Georg Oberdieck, Junliang Shen
Description
Summary:Let A be an abelian variety. We introduce A-equivariant Grothendieck rings and A-equivariant motivic Hall algebras, and endow them with natural integration maps to the ring of dual numbers. The construction allows a systematic treatment of reduced Donaldson-Thomas (DT) invariants by Hall algebra techniques. We calculate reduced DT invariants for K3×E and abelian threefolds for several imprimitive curve classes. This verifies (in special cases) multiple cover formulas conjectured by Oberdieck-Pandharipande and Bryan-Oberdieck-Pandharipande-Yin.
Item Description:Online veröffentlicht: 2. August 2018
Gesehen am 14.01.2025
Physical Description:Online Resource
ISSN:1460-244X
DOI:10.1112/plms.12178