Reduced Donaldson-Thomas invariants and the ring of dual numbers
Let A be an abelian variety. We introduce A-equivariant Grothendieck rings and A-equivariant motivic Hall algebras, and endow them with natural integration maps to the ring of dual numbers. The construction allows a systematic treatment of reduced Donaldson-Thomas (DT) invariants by Hall algebra tec...
Gespeichert in:
| Hauptverfasser: | , |
|---|---|
| Dokumenttyp: | Article (Journal) |
| Sprache: | Englisch |
| Veröffentlicht: |
January 2019
|
| In: |
Proceedings of the London Mathematical Society
Year: 2019, Jahrgang: 118, Heft: 1, Pages: 191-220 |
| ISSN: | 1460-244X |
| DOI: | 10.1112/plms.12178 |
| Online-Zugang: | Verlag, lizenzpflichtig, Volltext: https://doi.org/10.1112/plms.12178 Verlag, lizenzpflichtig, Volltext: https://onlinelibrary.wiley.com/doi/abs/10.1112/plms.12178 |
| Verfasserangaben: | Georg Oberdieck, Junliang Shen |
MARC
| LEADER | 00000caa a2200000 c 4500 | ||
|---|---|---|---|
| 001 | 1914525809 | ||
| 003 | DE-627 | ||
| 005 | 20250716222125.0 | ||
| 007 | cr uuu---uuuuu | ||
| 008 | 250114s2019 xx |||||o 00| ||eng c | ||
| 024 | 7 | |a 10.1112/plms.12178 |2 doi | |
| 035 | |a (DE-627)1914525809 | ||
| 035 | |a (DE-599)KXP1914525809 | ||
| 035 | |a (OCoLC)1528016159 | ||
| 040 | |a DE-627 |b ger |c DE-627 |e rda | ||
| 041 | |a eng | ||
| 084 | |a 27 |2 sdnb | ||
| 100 | 1 | |a Oberdieck, Georg |d 1988- |e VerfasserIn |0 (DE-588)1081631104 |0 (DE-627)846374161 |0 (DE-576)454645198 |4 aut | |
| 245 | 1 | 0 | |a Reduced Donaldson-Thomas invariants and the ring of dual numbers |c Georg Oberdieck, Junliang Shen |
| 264 | 1 | |c January 2019 | |
| 300 | |a 30 | ||
| 336 | |a Text |b txt |2 rdacontent | ||
| 337 | |a Computermedien |b c |2 rdamedia | ||
| 338 | |a Online-Ressource |b cr |2 rdacarrier | ||
| 500 | |a Online veröffentlicht: 2. August 2018 | ||
| 500 | |a Gesehen am 14.01.2025 | ||
| 520 | |a Let A be an abelian variety. We introduce A-equivariant Grothendieck rings and A-equivariant motivic Hall algebras, and endow them with natural integration maps to the ring of dual numbers. The construction allows a systematic treatment of reduced Donaldson-Thomas (DT) invariants by Hall algebra techniques. We calculate reduced DT invariants for K3×E and abelian threefolds for several imprimitive curve classes. This verifies (in special cases) multiple cover formulas conjectured by Oberdieck-Pandharipande and Bryan-Oberdieck-Pandharipande-Yin. | ||
| 650 | 4 | |a 14K99 (secondary) | |
| 650 | 4 | |a 14N35 (primary) | |
| 700 | 1 | |a Shen, Junliang |d 1991- |e VerfasserIn |0 (DE-588)1172007098 |0 (DE-627)1040834159 |0 (DE-576)513945636 |4 aut | |
| 773 | 0 | 8 | |i Enthalten in |a London Mathematical Society |t Proceedings of the London Mathematical Society |d Chichester : Wiley, 1865 |g 118(2019), 1 vom: Jan., Seite 191-220 |h Online-Ressource |w (DE-627)266883869 |w (DE-600)1468238-2 |w (DE-576)078940346 |x 1460-244X |7 nnas |
| 773 | 1 | 8 | |g volume:118 |g year:2019 |g number:1 |g month:01 |g pages:191-220 |g extent:30 |a Reduced Donaldson-Thomas invariants and the ring of dual numbers |
| 856 | 4 | 0 | |u https://doi.org/10.1112/plms.12178 |x Verlag |x Resolving-System |z lizenzpflichtig |3 Volltext |
| 856 | 4 | 0 | |u https://onlinelibrary.wiley.com/doi/abs/10.1112/plms.12178 |x Verlag |z lizenzpflichtig |3 Volltext |
| 951 | |a AR | ||
| 992 | |a 20250114 | ||
| 993 | |a Article | ||
| 994 | |a 2019 | ||
| 998 | |g 1081631104 |a Oberdieck, Georg |m 1081631104:Oberdieck, Georg |p 1 |x j | ||
| 999 | |a KXP-PPN1914525809 |e 4651025021 | ||
| BIB | |a Y | ||
| SER | |a journal | ||
| JSO | |a {"language":["eng"],"person":[{"roleDisplay":"VerfasserIn","role":"aut","given":"Georg","display":"Oberdieck, Georg","family":"Oberdieck"},{"family":"Shen","given":"Junliang","roleDisplay":"VerfasserIn","role":"aut","display":"Shen, Junliang"}],"relHost":[{"type":{"bibl":"periodical","media":"Online-Ressource"},"pubHistory":["1.1865 -"],"recId":"266883869","part":{"issue":"1","volume":"118","year":"2019","extent":"30","pages":"191-220","text":"118(2019), 1 vom: Jan., Seite 191-220"},"note":["Gesehen am 20.02.24"],"corporate":[{"roleDisplay":"VerfasserIn","role":"aut","display":"London Mathematical Society"}],"id":{"issn":["1460-244X"],"doi":["10.1112/(ISSN)1460-244X"],"zdb":["1468238-2"],"eki":["266883869"]},"disp":"London Mathematical SocietyProceedings of the London Mathematical Society","language":["eng"],"origin":[{"dateIssuedKey":"1865","publisherPlace":"Chichester ; Cambridge ; Oxford","dateIssuedDisp":"1865-","publisher":"Wiley ; Cambridge Univ. Press ; Oxford Univ. Press"}],"physDesc":[{"extent":"Online-Ressource"}],"title":[{"title_sort":"Proceedings of the London Mathematical Society","title":"Proceedings of the London Mathematical Society"}]}],"name":{"displayForm":["Georg Oberdieck, Junliang Shen"]},"id":{"doi":["10.1112/plms.12178"],"eki":["1914525809"]},"origin":[{"dateIssuedKey":"2019","dateIssuedDisp":"January 2019"}],"physDesc":[{"extent":"30 S."}],"title":[{"title_sort":"Reduced Donaldson-Thomas invariants and the ring of dual numbers","title":"Reduced Donaldson-Thomas invariants and the ring of dual numbers"}],"type":{"media":"Online-Ressource","bibl":"article-journal"},"recId":"1914525809","note":["Online veröffentlicht: 2. August 2018","Gesehen am 14.01.2025"]} | ||
| SRT | |a OBERDIECKGREDUCEDDON2019 | ||