Reduced Donaldson-Thomas invariants and the ring of dual numbers

Let A be an abelian variety. We introduce A-equivariant Grothendieck rings and A-equivariant motivic Hall algebras, and endow them with natural integration maps to the ring of dual numbers. The construction allows a systematic treatment of reduced Donaldson-Thomas (DT) invariants by Hall algebra tec...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Oberdieck, Georg (VerfasserIn) , Shen, Junliang (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: January 2019
In: Proceedings of the London Mathematical Society
Year: 2019, Jahrgang: 118, Heft: 1, Pages: 191-220
ISSN:1460-244X
DOI:10.1112/plms.12178
Online-Zugang:Verlag, lizenzpflichtig, Volltext: https://doi.org/10.1112/plms.12178
Verlag, lizenzpflichtig, Volltext: https://onlinelibrary.wiley.com/doi/abs/10.1112/plms.12178
Volltext
Verfasserangaben:Georg Oberdieck, Junliang Shen

MARC

LEADER 00000caa a2200000 c 4500
001 1914525809
003 DE-627
005 20250716222125.0
007 cr uuu---uuuuu
008 250114s2019 xx |||||o 00| ||eng c
024 7 |a 10.1112/plms.12178  |2 doi 
035 |a (DE-627)1914525809 
035 |a (DE-599)KXP1914525809 
035 |a (OCoLC)1528016159 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 27  |2 sdnb 
100 1 |a Oberdieck, Georg  |d 1988-  |e VerfasserIn  |0 (DE-588)1081631104  |0 (DE-627)846374161  |0 (DE-576)454645198  |4 aut 
245 1 0 |a Reduced Donaldson-Thomas invariants and the ring of dual numbers  |c Georg Oberdieck, Junliang Shen 
264 1 |c January 2019 
300 |a 30 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Online veröffentlicht: 2. August 2018 
500 |a Gesehen am 14.01.2025 
520 |a Let A be an abelian variety. We introduce A-equivariant Grothendieck rings and A-equivariant motivic Hall algebras, and endow them with natural integration maps to the ring of dual numbers. The construction allows a systematic treatment of reduced Donaldson-Thomas (DT) invariants by Hall algebra techniques. We calculate reduced DT invariants for K3×E and abelian threefolds for several imprimitive curve classes. This verifies (in special cases) multiple cover formulas conjectured by Oberdieck-Pandharipande and Bryan-Oberdieck-Pandharipande-Yin. 
650 4 |a 14K99 (secondary) 
650 4 |a 14N35 (primary) 
700 1 |a Shen, Junliang  |d 1991-  |e VerfasserIn  |0 (DE-588)1172007098  |0 (DE-627)1040834159  |0 (DE-576)513945636  |4 aut 
773 0 8 |i Enthalten in  |a London Mathematical Society  |t Proceedings of the London Mathematical Society  |d Chichester : Wiley, 1865  |g 118(2019), 1 vom: Jan., Seite 191-220  |h Online-Ressource  |w (DE-627)266883869  |w (DE-600)1468238-2  |w (DE-576)078940346  |x 1460-244X  |7 nnas 
773 1 8 |g volume:118  |g year:2019  |g number:1  |g month:01  |g pages:191-220  |g extent:30  |a Reduced Donaldson-Thomas invariants and the ring of dual numbers 
856 4 0 |u https://doi.org/10.1112/plms.12178  |x Verlag  |x Resolving-System  |z lizenzpflichtig  |3 Volltext 
856 4 0 |u https://onlinelibrary.wiley.com/doi/abs/10.1112/plms.12178  |x Verlag  |z lizenzpflichtig  |3 Volltext 
951 |a AR 
992 |a 20250114 
993 |a Article 
994 |a 2019 
998 |g 1081631104  |a Oberdieck, Georg  |m 1081631104:Oberdieck, Georg  |p 1  |x j 
999 |a KXP-PPN1914525809  |e 4651025021 
BIB |a Y 
SER |a journal 
JSO |a {"language":["eng"],"person":[{"roleDisplay":"VerfasserIn","role":"aut","given":"Georg","display":"Oberdieck, Georg","family":"Oberdieck"},{"family":"Shen","given":"Junliang","roleDisplay":"VerfasserIn","role":"aut","display":"Shen, Junliang"}],"relHost":[{"type":{"bibl":"periodical","media":"Online-Ressource"},"pubHistory":["1.1865 -"],"recId":"266883869","part":{"issue":"1","volume":"118","year":"2019","extent":"30","pages":"191-220","text":"118(2019), 1 vom: Jan., Seite 191-220"},"note":["Gesehen am 20.02.24"],"corporate":[{"roleDisplay":"VerfasserIn","role":"aut","display":"London Mathematical Society"}],"id":{"issn":["1460-244X"],"doi":["10.1112/(ISSN)1460-244X"],"zdb":["1468238-2"],"eki":["266883869"]},"disp":"London Mathematical SocietyProceedings of the London Mathematical Society","language":["eng"],"origin":[{"dateIssuedKey":"1865","publisherPlace":"Chichester ; Cambridge ; Oxford","dateIssuedDisp":"1865-","publisher":"Wiley ; Cambridge Univ. Press ; Oxford Univ. Press"}],"physDesc":[{"extent":"Online-Ressource"}],"title":[{"title_sort":"Proceedings of the London Mathematical Society","title":"Proceedings of the London Mathematical Society"}]}],"name":{"displayForm":["Georg Oberdieck, Junliang Shen"]},"id":{"doi":["10.1112/plms.12178"],"eki":["1914525809"]},"origin":[{"dateIssuedKey":"2019","dateIssuedDisp":"January 2019"}],"physDesc":[{"extent":"30 S."}],"title":[{"title_sort":"Reduced Donaldson-Thomas invariants and the ring of dual numbers","title":"Reduced Donaldson-Thomas invariants and the ring of dual numbers"}],"type":{"media":"Online-Ressource","bibl":"article-journal"},"recId":"1914525809","note":["Online veröffentlicht: 2. August 2018","Gesehen am 14.01.2025"]} 
SRT |a OBERDIECKGREDUCEDDON2019