Weakly supervised deep learning in radiology

Deep learning (DL) is currently the standard artificial intelligence tool for computer-based image analysis in radiology. Traditionally, DL models have been trained with strongly supervised learning methods. These methods depend on reference standard labels, typically applied manually by experts. In...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Misera, Leo (VerfasserIn) , Müller-Franzes, Gustav (VerfasserIn) , Truhn, Daniel (VerfasserIn) , Kather, Jakob Nikolas (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: July 2024
In: Radiology
Year: 2024, Jahrgang: 312, Heft: 1, Pages: 1-10
ISSN:1527-1315
DOI:10.1148/radiol.232085
Online-Zugang:Verlag, lizenzpflichtig, Volltext: https://doi.org/10.1148/radiol.232085
Verlag, lizenzpflichtig, Volltext: https://pubs.rsna.org/doi/10.1148/radiol.232085
Volltext
Verfasserangaben:Leo Misera, Dipl.-Ing., Gustav Müller-Franzes, MSc, Daniel Truhn, MD, MSc, Jakob Nikolas Kather, Prof, MD, MSc

MARC

LEADER 00000caa a2200000 c 4500
001 1914741943
003 DE-627
005 20250716222649.0
007 cr uuu---uuuuu
008 250115s2024 xx |||||o 00| ||eng c
024 7 |a 10.1148/radiol.232085  |2 doi 
035 |a (DE-627)1914741943 
035 |a (DE-599)KXP1914741943 
035 |a (OCoLC)1528015983 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 33  |2 sdnb 
100 1 |a Misera, Leo  |e VerfasserIn  |0 (DE-588)1353436268  |0 (DE-627)1914742729  |4 aut 
245 1 0 |a Weakly supervised deep learning in radiology  |c Leo Misera, Dipl.-Ing., Gustav Müller-Franzes, MSc, Daniel Truhn, MD, MSc, Jakob Nikolas Kather, Prof, MD, MSc 
264 1 |c July 2024 
300 |b Illustrationen 
300 |a 10 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Gesehen am 15.01.2025 
520 |a Deep learning (DL) is currently the standard artificial intelligence tool for computer-based image analysis in radiology. Traditionally, DL models have been trained with strongly supervised learning methods. These methods depend on reference standard labels, typically applied manually by experts. In contrast, weakly supervised learning is more scalable. Weak supervision comprises situations in which only a portion of the data are labeled (incomplete supervision), labels refer to a whole region or case as opposed to a precisely delineated image region (inexact supervision), or labels contain errors (inaccurate supervision). In many applications, weak labels are sufficient to train useful models. Thus, weakly supervised learning can unlock a large amount of otherwise unusable data for training DL models. One example of this is using large language models to automatically extract weak labels from free-text radiology reports. Here, we outline the key concepts in weakly supervised learning and provide an overview of applications in radiologic image analysis. With more fundamental and clinical translational work, weakly supervised learning could facilitate the uptake of DL in radiology and research workflows by enabling large-scale image analysis and advancing the development of new DL-based biomarkers. - - © RSNA, 2024 
700 1 |a Müller-Franzes, Gustav  |e VerfasserIn  |0 (DE-588)1328685586  |0 (DE-627)188810273X  |4 aut 
700 1 |a Truhn, Daniel  |e VerfasserIn  |0 (DE-588)1047348306  |0 (DE-627)778145913  |0 (DE-576)400927314  |4 aut 
700 1 |a Kather, Jakob Nikolas  |d 1989-  |e VerfasserIn  |0 (DE-588)1064064914  |0 (DE-627)812897587  |0 (DE-576)423589091  |4 aut 
773 0 8 |i Enthalten in  |t Radiology  |d Oak Brook, Ill. : Soc., 1923  |g 312(2024), 1 vom: Juli, Artikel-ID e232085, Seite 1-10  |h Online-Ressource  |w (DE-627)320487253  |w (DE-600)2010588-5  |w (DE-576)094056706  |x 1527-1315  |7 nnas  |a Weakly supervised deep learning in radiology 
773 1 8 |g volume:312  |g year:2024  |g number:1  |g month:07  |g elocationid:e232085  |g pages:1-10  |g extent:10  |a Weakly supervised deep learning in radiology 
856 4 0 |u https://doi.org/10.1148/radiol.232085  |x Verlag  |x Resolving-System  |z lizenzpflichtig  |3 Volltext 
856 4 0 |u https://pubs.rsna.org/doi/10.1148/radiol.232085  |x Verlag  |z lizenzpflichtig  |3 Volltext 
951 |a AR 
992 |a 20250115 
993 |a Article 
994 |a 2024 
998 |g 1064064914  |a Kather, Jakob Nikolas  |m 1064064914:Kather, Jakob Nikolas  |d 910000  |d 910100  |e 910000PK1064064914  |e 910100PK1064064914  |k 0/910000/  |k 1/910000/910100/  |p 4  |y j 
999 |a KXP-PPN1914741943  |e 4651976182 
BIB |a Y 
SER |a journal 
JSO |a {"language":["eng"],"type":{"bibl":"article-journal","media":"Online-Ressource"},"note":["Gesehen am 15.01.2025"],"title":[{"title_sort":"Weakly supervised deep learning in radiology","title":"Weakly supervised deep learning in radiology"}],"origin":[{"dateIssuedDisp":"July 2024","dateIssuedKey":"2024"}],"relHost":[{"physDesc":[{"extent":"Online-Ressource"}],"recId":"320487253","disp":"Weakly supervised deep learning in radiologyRadiology","origin":[{"publisher":"Soc.","dateIssuedKey":"1923","dateIssuedDisp":"1923-","publisherPlace":"Oak Brook, Ill."}],"note":["Fortsetzung der Druck-Ausgabe","Gesehen 07.11.22"],"language":["eng"],"type":{"media":"Online-Ressource","bibl":"periodical"},"title":[{"title":"Radiology","title_sort":"Radiology"}],"corporate":[{"display":"Radiological Society of North America","role":"isb"}],"pubHistory":["1.1923 -"],"name":{"displayForm":["The Radiological Society of North America"]},"part":{"year":"2024","volume":"312","pages":"1-10","issue":"1","text":"312(2024), 1 vom: Juli, Artikel-ID e232085, Seite 1-10","extent":"10"},"id":{"zdb":["2010588-5"],"eki":["320487253"],"issn":["1527-1315"]}}],"person":[{"family":"Misera","role":"aut","given":"Leo","display":"Misera, Leo"},{"display":"Müller-Franzes, Gustav","family":"Müller-Franzes","role":"aut","given":"Gustav"},{"display":"Truhn, Daniel","family":"Truhn","role":"aut","given":"Daniel"},{"display":"Kather, Jakob Nikolas","family":"Kather","given":"Jakob Nikolas","role":"aut"}],"physDesc":[{"noteIll":"Illustrationen","extent":"10 S."}],"recId":"1914741943","id":{"doi":["10.1148/radiol.232085"],"eki":["1914741943"]},"name":{"displayForm":["Leo Misera, Dipl.-Ing., Gustav Müller-Franzes, MSc, Daniel Truhn, MD, MSc, Jakob Nikolas Kather, Prof, MD, MSc"]}} 
SRT |a MISERALEOMWEAKLYSUPE2024