Operator product expansion for radial lattice quantization of 3D 𝜙4 theory
At its critical point, the three-dimensional lattice Ising model is described by a conformal field theory (CFT), the 3D Ising CFT. Instead of carrying out simulations on Euclidean lattices, we use the quantum finite elements method to implement radially quantized critical 𝜙4 theory on simplicial lat...
Gespeichert in:
| Hauptverfasser: | , , , , , , |
|---|---|
| Dokumenttyp: | Article (Journal) |
| Sprache: | Englisch |
| Veröffentlicht: |
24 June, 2024
|
| In: |
Physical review
Year: 2024, Jahrgang: 109, Heft: 11, Pages: 1-16 |
| ISSN: | 2470-0029 |
| DOI: | 10.1103/PhysRevD.109.114518 |
| Online-Zugang: | Verlag, kostenfrei, Volltext: https://doi.org/10.1103/PhysRevD.109.114518 Verlag, kostenfrei, Volltext: https://link.aps.org/doi/10.1103/PhysRevD.109.114518 |
| Verfasserangaben: | Venkitesh Ayyar, Richard C. Brower, George T. Fleming, Anna-Maria E. Glück, Evan K. Owen, Timothy G. Raben, and Chung-I Tan |
| Zusammenfassung: | At its critical point, the three-dimensional lattice Ising model is described by a conformal field theory (CFT), the 3D Ising CFT. Instead of carrying out simulations on Euclidean lattices, we use the quantum finite elements method to implement radially quantized critical 𝜙4 theory on simplicial lattices approaching ℝ ×𝑆2. Computing the four-point function of identical scalars, we demonstrate the power of radial quantization by the accurate determination of the scaling dimensions Δ𝜀 and Δ𝑇 as well as ratios of the operator product expansion coefficients 𝑓𝜎𝜎𝜀 and 𝑓𝜎𝜎𝑇 of the first spin-0 and spin-2 primary operators 𝜀 and 𝑇 of the 3D Ising CFT. |
|---|---|
| Beschreibung: | Im Text ist "4" hochgestellt Gesehen am 22.01.2025 |
| Beschreibung: | Online Resource |
| ISSN: | 2470-0029 |
| DOI: | 10.1103/PhysRevD.109.114518 |