Operator product expansion for radial lattice quantization of 3D 𝜙4 theory

At its critical point, the three-dimensional lattice Ising model is described by a conformal field theory (CFT), the 3D Ising CFT. Instead of carrying out simulations on Euclidean lattices, we use the quantum finite elements method to implement radially quantized critical 𝜙4 theory on simplicial lat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Ayyar, Venkitesh (VerfasserIn) , Brower, Richard C. (VerfasserIn) , Fleming, George T. (VerfasserIn) , Glück, Anna-Maria E. (VerfasserIn) , Owen, Evan K. (VerfasserIn) , Raben, Timothy G. (VerfasserIn) , Tan, Chung-I (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: 24 June, 2024
In: Physical review
Year: 2024, Jahrgang: 109, Heft: 11, Pages: 1-16
ISSN:2470-0029
DOI:10.1103/PhysRevD.109.114518
Online-Zugang:Verlag, kostenfrei, Volltext: https://doi.org/10.1103/PhysRevD.109.114518
Verlag, kostenfrei, Volltext: https://link.aps.org/doi/10.1103/PhysRevD.109.114518
Volltext
Verfasserangaben:Venkitesh Ayyar, Richard C. Brower, George T. Fleming, Anna-Maria E. Glück, Evan K. Owen, Timothy G. Raben, and Chung-I Tan
Beschreibung
Zusammenfassung:At its critical point, the three-dimensional lattice Ising model is described by a conformal field theory (CFT), the 3D Ising CFT. Instead of carrying out simulations on Euclidean lattices, we use the quantum finite elements method to implement radially quantized critical 𝜙4 theory on simplicial lattices approaching ℝ ×𝑆2. Computing the four-point function of identical scalars, we demonstrate the power of radial quantization by the accurate determination of the scaling dimensions Δ𝜀 and Δ𝑇 as well as ratios of the operator product expansion coefficients 𝑓𝜎⁢𝜎⁢𝜀 and 𝑓𝜎⁢𝜎⁢𝑇 of the first spin-0 and spin-2 primary operators 𝜀 and 𝑇 of the 3D Ising CFT.
Beschreibung:Im Text ist "4" hochgestellt
Gesehen am 22.01.2025
Beschreibung:Online Resource
ISSN:2470-0029
DOI:10.1103/PhysRevD.109.114518