LLMs4Implicit-knowledge-generation public
Code for equipping pretrained language models (BART, GPT-2, XLNet) with commonsense knowledge for generating implicit knowledge statements between two sentences, by (i) finetuning the models on corpora enriched with implicit information; and by (ii) constraining models with key concepts and commonse...
Saved in:
| Main Author: | |
|---|---|
| Format: | Database Research Data |
| Language: | English |
| Published: |
Heidelberg
Universität
2024-02-26
|
| DOI: | 10.11588/data/5VTJ26 |
| Subjects: | |
| Online Access: | Verlag, kostenfrei, Volltext: https://doi.org/10.11588/data/5VTJ26 Verlag, kostenfrei, Volltext: https://heidata.uni-heidelberg.de/dataset.xhtml?persistentId=doi:10.11588/DATA/5VTJ26 |
| Author Notes: | Maria Becker |
| Summary: | Code for equipping pretrained language models (BART, GPT-2, XLNet) with commonsense knowledge for generating implicit knowledge statements between two sentences, by (i) finetuning the models on corpora enriched with implicit information; and by (ii) constraining models with key concepts and commonsense knowledge paths connecting them. |
|---|---|
| Item Description: | Gesehen am 30.01.2025 Gefördert durch: DFG: SPP-1999; DFG: FR1707/-4-1; Leibniz-Gesellschaft und Ministerium für Wissenschaft, Forschung und Kunst Baden-Württemberg: SAS-2015-IDS-LWC |
| Physical Description: | Online Resource |
| DOI: | 10.11588/data/5VTJ26 |