Stratified simple homotopy type: theory and computation

Generalizing the idea of elementary simplicial collapses and expansions in classical simple homotopy theory to a stratified setting, we find local combinatorial transformations on stratified simplicial complexes that leave the global stratified homotopy type invariant. In particular, we obtain the n...

Full description

Saved in:
Bibliographic Details
Main Authors: Banagl, Markus (Author) , Mäder, Tim (Author) , Sadlo, Filip (Author)
Format: Article (Journal)
Language:English
Published: September 2024
In: Advances in applied mathematics
Year: 2024, Volume: 160, Pages: 1-37
DOI:10.1016/j.aam.2024.102753
Online Access:Verlag, kostenfrei, Volltext: https://doi.org/10.1016/j.aam.2024.102753
Verlag, kostenfrei, Volltext: https://www.sciencedirect.com/science/article/pii/S019688582400085X
Get full text
Author Notes:Markus Banagl, Tim Mäder, Filip Sadlo
Description
Summary:Generalizing the idea of elementary simplicial collapses and expansions in classical simple homotopy theory to a stratified setting, we find local combinatorial transformations on stratified simplicial complexes that leave the global stratified homotopy type invariant. In particular, we obtain the notions of stratified formal deformations generalizing J. H. C. Whitehead's formal deformations. We implement the algorithmic execution of such transformations and the computation of intersection homology to illustrate the behavior of stratified simple homotopy equivalences on Vietoris-Rips type complexes associated to point sets sampled near given, possibly singular, spaces.
Item Description:Online verfügbar 12 August 2024
Gesehen am 17.02.2025
Physical Description:Online Resource
DOI:10.1016/j.aam.2024.102753