Artificial intelligence and imaging for diagnostic and treatment challenges in breast care: first Deep Breast Workshop, Deep-Breath 2024 : held in conjunction with MICCAI 2024, Marrakesh, Morocco, October 10, 2024 : proceedings

Evaluation of Bagging Ensembles on Multimodal Data for Breast Cancer Diagnosis -- HF-Fed: Hierarchical based customized Federated Learning Framework for X-Ray Imaging -- DuEU-Net: Dual Encoder UNet with Modality-Agnostic Training for PET-CT Multi-Modal Organ and Lesion Segmentation -- One for All: U...

Full description

Saved in:
Bibliographic Details
Corporate Author: Deep Breast Workshop on AI and Imaging for Diagnostic and Treatment Challenges in Breast Care, Marrakesch (Author)
Other Authors: Mann, Ritse M. (Editor) , Zhang, Tianyu (Editor) , Tan, Tao (Editor) , Han, Luyi (Editor) , Truhn, Daniel (Editor) , Li, Shuo (Editor) , Gao, Yuan (Editor) , Doyle, Shannon (Editor) , Martí Marly, Robert (Editor) , Kather, Jakob Nikolas (Editor) , Pinker-Domenig, Katja (Editor) , Wu, Shandong (Editor) , Litjens, Geert (Editor)
Format: Conference Paper
Language:English
Published: Cham Springer [2025]
Series:Lecture notes in computer science 15451
DOI:10.1007/978-3-031-77789-9
Subjects:
Online Access:Resolving-System, lizenzpflichtig: https://doi.org/10.1007/978-3-031-77789-9
Get full text
Author Notes:Ritse M. Mann, Tianyu Zhang, Tao Tan, Luyi Han, Danial Truhn, Shuo Li, Yuan Gao, Shannon Doyle, Robert Martí Marly, Jakob Nikolas Kather, Katja Pinker-Domenig, Shandong Wu, Geert Litjens, editors

MARC

LEADER 00000cam a2200000 c 4500
001 1917471130
003 DE-627
005 20250723101727.0
007 cr uuu---uuuuu
008 250218s2025 sz |||||o 00| ||eng c
020 |a 9783031777899  |9 978-3-031-77789-9 
024 7 |a 10.1007/978-3-031-77789-9  |2 doi 
035 |a (DE-627)1917471130 
035 |a (DE-599)KEP112381707 
035 |a (DE-He213)978-3-031-77789-9 
035 |a (DE-627-1)112381707 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
044 |c XA-CH 
072 7 |a UYQ  |2 bicssc 
072 7 |a COM004000  |2 bisacsh 
082 0 |a 006.3  |2 23 
084 |a 33  |2 sdnb 
111 2 |a Deep Breast Workshop on AI and Imaging for Diagnostic and Treatment Challenges in Breast Care  |n 1.  |d 2024  |c Marrakesch  |j VerfasserIn  |0 (DE-588)1362092819  |0 (DE-627)1921141573  |4 aut 
245 1 0 |a Artificial intelligence and imaging for diagnostic and treatment challenges in breast care  |b first Deep Breast Workshop, Deep-Breath 2024 : held in conjunction with MICCAI 2024, Marrakesh, Morocco, October 10, 2024 : proceedings  |c Ritse M. Mann, Tianyu Zhang, Tao Tan, Luyi Han, Danial Truhn, Shuo Li, Yuan Gao, Shannon Doyle, Robert Martí Marly, Jakob Nikolas Kather, Katja Pinker-Domenig, Shandong Wu, Geert Litjens, editors 
264 1 |a Cham  |b Springer  |c [2025] 
264 4 |c © 2025 
300 |a 1 Online-Ressource (xi, 246 Seiten) 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
490 0 |a Lecture notes in computer science  |v 15451 
520 |a Evaluation of Bagging Ensembles on Multimodal Data for Breast Cancer Diagnosis -- HF-Fed: Hierarchical based customized Federated Learning Framework for X-Ray Imaging -- DuEU-Net: Dual Encoder UNet with Modality-Agnostic Training for PET-CT Multi-Modal Organ and Lesion Segmentation -- One for All: UNET Training on Single-Sequence Masks for Multi-Sequence Breast MRI Segmentation -- Multimodal Breast MRI Language-Image Pretraining (MLIP): An Exploration of a Breast MRI Foundation Model -- Enhancing the Utility of Privacy-Preserving Cancer Classification using Synthetic Data -- Efficient Generation of Synthetic Breast CT Slices By Combining Generative and Super-Resolution Models -- Exploring Patient Data Requirements in Training Effective AI Models for MRI-based Breast Cancer Classification -- Virtual dynamic contrast enhanced breast MRI using 2D U-Net -- Optimizing BI-RADS 4 Lesion Assessment using Lightweight Convolutional Neural Network with CBAM in Contrast Enhanced Mammography -- Mammographic Breast Positioning Assessment via Deep Learning -- Endpoint Detection in Breast Images for Automatic Classification of Breast Cancer Aesthetic Results -- Thick Slices for Optimal Digital Breast Tomosynthesis Classification with Deep-Learning -- Predicting Aesthetic Outcomes in Breast Cancer Surgery: a Multimodal Retrieval Approach -- Vision Mamba for Classification of Breast Ultrasound Images -- Breast Cancer Molecular Subtyping from H&E Whole Slide Images using Foundation Models and Transformers -- Graph Neural Networks for modelling breast biomechanical compression -- A generative adversarial approach to remove Moiré artifacts in Dark-field and Phase-contrast x-ray images -- MRI Breast tissue segmentation using nnUNet for Biomechanical modeling -- Fat-Suppressed Breast MRI Synthesis for Domain Adaptation in Tumour Segmentation -- Guiding Breast Conservative Surgery by Augmented Reality from Preoperative MRI: Initial System Design and Retrospective Trials -- ELK: Enhanced Learning through cross-modal Knowledge transfer for lesion detection in limited-sample contrast-enhanced mammography datasets -- Safe Breast Cancer Diagnosis Resilient to Mammographic Adversarial Samples. 
520 |a This book constitutes the refereed proceedings of the First Deep Breast Workshop on Artificial Intelligence and Imaging for Diagnostic and Treatment Challenges in Breast Care, Deep-Breath 2024, held in conjunction with the 26th International Conference on Medical Imaging and Computer-Assisted Intervention, MICCAI 2024, in Marrakesh, Morocco, on October 10, 2024.The 23 regular papers presented in this book were carefully reviewed and selected from 51 submissions.The workshop provides an international platform for presentation of - and discussion on - studies related to AI in breast imaging. Deep-Breath aims to promote the development of this research area by sharing insights in academic research and clinical practice between clinicians and AI experts, and by exploring together the opportunities and potential challenges of AI applications in breast health. The deep-breath workshop provides, therefore, an unique forum to discuss the possibilities in this challenging field, aiming to create value that eventually truly leads to benefit for physicians and patients. 
650 0 |a Artificial intelligence. 
650 4 |a Angewandte Informatik 
650 4 |a Artificial intelligence 
650 4 |a Bildgebende Verfahren 
650 4 |a COMPUTERS / Artificial Intelligence 
650 4 |a COMPUTERS / Computer Science 
650 4 |a Information technology: general issues 
650 4 |a Künstliche Intelligenz 
650 4 |a MEDICAL / Diagnostic Imaging 
650 4 |a Medical imaging 
655 7 |a Konferenzschrift  |0 (DE-588)1071861417  |0 (DE-627)826484824  |0 (DE-576)433375485  |2 gnd-content 
700 1 |a Mann, Ritse M.  |e HerausgeberIn  |0 (orcid)0000-0001-8111-1930  |4 edt 
700 1 |a Zhang, Tianyu  |e HerausgeberIn  |0 (orcid)0000-0001-9891-6874  |4 edt 
700 1 |a Tan, Tao  |e HerausgeberIn  |0 (orcid)0000-0001-5403-0887  |4 edt 
700 1 |a Han, Luyi  |e HerausgeberIn  |0 (orcid)0000-0003-4046-2763  |4 edt 
700 1 |a Truhn, Daniel  |e HerausgeberIn  |0 (DE-588)1047348306  |0 (DE-627)778145913  |0 (DE-576)400927314  |4 edt 
700 1 |a Li, Shuo  |d 1974-  |e HerausgeberIn  |0 (DE-588)1162095814  |0 (DE-627)1025533860  |0 (DE-576)507146069  |4 edt 
700 1 |a Gao, Yuan  |e HerausgeberIn  |0 (orcid)0000-0001-6326-129X  |4 edt 
700 1 |a Doyle, Shannon  |e HerausgeberIn  |0 (orcid)0000-0002-1433-9051  |4 edt 
700 1 |a Martí Marly, Robert  |e HerausgeberIn  |0 (orcid)0000-0002-8080-2710  |4 edt 
700 1 |a Kather, Jakob Nikolas  |d 1989-  |e HerausgeberIn  |0 (DE-588)1064064914  |0 (DE-627)812897587  |0 (DE-576)423589091  |4 edt 
700 1 |a Pinker-Domenig, Katja  |d 1977-  |e HerausgeberIn  |0 (DE-588)129075841  |0 (DE-627)516179322  |0 (DE-576)29748107X  |4 edt 
700 1 |a Wu, Shandong  |e HerausgeberIn  |0 (DE-588)1360358447  |0 (DE-627)1920035451  |4 edt 
700 1 |a Litjens, Geert  |e HerausgeberIn  |0 (DE-588)1209568098  |0 (DE-627)169720547X  |4 edt 
776 1 |z 9783031777882 
776 1 |z 9783031777905 
776 0 8 |i Erscheint auch als  |n Druck-Ausgabe  |t Artificial Intelligence and Imaging for Diagnostic and Treatment Challenges in Breast Care  |d Cham : Springer International Publishing AG, 2025  |h 246 Seiten  |w (DE-627)1917421923  |z 9783031777882 
856 4 0 |u https://doi.org/10.1007/978-3-031-77789-9  |m X:SPRINGER  |x Resolving-System  |z lizenzpflichtig 
912 |a ZDB-2-SEB  |b 2025 
912 |a ZDB-2-SCS  |b 2025 
912 |a ZDB-2-SXCS  |b 2025 
912 |a ZDB-2-LNC  |b 2025 
951 |a BO 
992 |a 20250408 
993 |a ConferencePaper 
994 |a 2025 
998 |g 1064064914  |a Kather, Jakob Nikolas  |m 1064064914:Kather, Jakob Nikolas  |d 910000  |d 910100  |e 910000PK1064064914  |e 910100PK1064064914  |k 0/910000/  |k 1/910000/910100/  |p 10 
999 |a KXP-PPN1917471130  |e 4697997794 
BIB |a Y 
JSO |a {"physDesc":[{"extent":"1 Online-Ressource (xi, 246 Seiten)"}],"recId":"1917471130","corporate":[{"role":"aut","display":"Deep Breast Workshop on AI and Imaging for Diagnostic and Treatment Challenges in Breast Care (1., 2024, Marrakesch)"}],"person":[{"display":"Mann, Ritse M.","family":"Mann","role":"edt","given":"Ritse M."},{"display":"Zhang, Tianyu","role":"edt","given":"Tianyu","family":"Zhang"},{"display":"Tan, Tao","family":"Tan","role":"edt","given":"Tao"},{"family":"Han","role":"edt","given":"Luyi","display":"Han, Luyi"},{"given":"Daniel","role":"edt","family":"Truhn","display":"Truhn, Daniel"},{"display":"Li, Shuo","family":"Li","role":"edt","given":"Shuo"},{"family":"Gao","given":"Yuan","role":"edt","display":"Gao, Yuan"},{"display":"Doyle, Shannon","given":"Shannon","role":"edt","family":"Doyle"},{"display":"Martí Marly, Robert","role":"edt","given":"Robert","family":"Martí Marly"},{"display":"Kather, Jakob Nikolas","family":"Kather","given":"Jakob Nikolas","role":"edt"},{"family":"Pinker-Domenig","given":"Katja","role":"edt","display":"Pinker-Domenig, Katja"},{"display":"Wu, Shandong","family":"Wu","given":"Shandong","role":"edt"},{"family":"Litjens","role":"edt","given":"Geert","display":"Litjens, Geert"}],"name":{"displayForm":["Ritse M. Mann, Tianyu Zhang, Tao Tan, Luyi Han, Danial Truhn, Shuo Li, Yuan Gao, Shannon Doyle, Robert Martí Marly, Jakob Nikolas Kather, Katja Pinker-Domenig, Shandong Wu, Geert Litjens, editors"]},"origin":[{"dateIssuedDisp":"[2025]","publisherPlace":"Cham","dateIssuedKey":"2025","publisher":"Springer"}],"language":["eng"],"type":{"media":"Online-Ressource","bibl":"book"},"title":[{"title":"Artificial intelligence and imaging for diagnostic and treatment challenges in breast care","title_sort":"Artificial intelligence and imaging for diagnostic and treatment challenges in breast care","subtitle":"first Deep Breast Workshop, Deep-Breath 2024 : held in conjunction with MICCAI 2024, Marrakesh, Morocco, October 10, 2024 : proceedings"}],"id":{"eki":["1917471130"],"isbn":["9783031777899"],"doi":["10.1007/978-3-031-77789-9"]}} 
SRT |a DEEPBREASTARTIFICIAL2025