Shear-shape cocycles for measured laminations and ergodic theory of the earthquake flow

We extend Mirzakhani’s conjugacy between the earthquake and horocycle flows to a bijection, demonstrating conjugacies between these flows on all strata and exhibiting an abundance of new ergodic measures for the earthquake flow. The structure of our map indicates a natural extension of the earthquak...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Calderon, Aaron (VerfasserIn) , Farre, James (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: 24 August 2024
In: Geometry & topology
Year: 2024, Jahrgang: 28, Heft: 5, Pages: 1995-2124
ISSN:1364-0380
DOI:10.2140/gt.2024.28.1995
Online-Zugang:Verlag, kostenfrei, Volltext: https://doi.org/10.2140/gt.2024.28.1995
Verlag, kostenfrei, Volltext: https://msp.org/gt/2024/28-5/p01.xhtml
Volltext
Verfasserangaben:Aaron Calderon, James Farre
Beschreibung
Zusammenfassung:We extend Mirzakhani’s conjugacy between the earthquake and horocycle flows to a bijection, demonstrating conjugacies between these flows on all strata and exhibiting an abundance of new ergodic measures for the earthquake flow. The structure of our map indicates a natural extension of the earthquake flow to an action of the upper-triangular subgroup P<SL2R and we classify the ergodic measures for this action as pullbacks of affine measures on the bundle of quadratic differentials. Our main tool is a generalization of the shear coordinates of Bonahon and Thurston to arbitrary measured laminations.
Beschreibung:Gesehen am 18.02.2025
Beschreibung:Online Resource
ISSN:1364-0380
DOI:10.2140/gt.2024.28.1995