Dynamic critical exponent in quantum long-range models

Quantum long-range models at zero temperature can be described by fractional Lifshitz field theories, that is, anisotropic models whose actions are short range in time and long range in space. In this paper, we study the renormalization of fractional Lifshitz field theories with weakly relevant cubi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Benedetti, Dario (VerfasserIn) , Gurǎu, Rǎzvan (VerfasserIn) , Lettera, Davide (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: 4 September, 2024
In: Physical review
Year: 2024, Jahrgang: 110, Heft: 10, Pages: 1-12
ISSN:2469-9969
DOI:10.1103/PhysRevB.110.104102
Online-Zugang:Verlag, lizenzpflichtig, Volltext: https://doi.org/10.1103/PhysRevB.110.104102
Verlag, lizenzpflichtig, Volltext: https://link.aps.org/doi/10.1103/PhysRevB.110.104102
Volltext
Verfasserangaben:Dario Benedetti, Razvan Gurau, and Davide Lettera
Beschreibung
Zusammenfassung:Quantum long-range models at zero temperature can be described by fractional Lifshitz field theories, that is, anisotropic models whose actions are short range in time and long range in space. In this paper, we study the renormalization of fractional Lifshitz field theories with weakly relevant cubic or quartic self-interactions. Their nontrivial infrared fixed points exhibit Lifshitz scale invariance and we compute the lowest-order corrections to the dynamic critical exponent.
Beschreibung:Gesehen am 19.02.2025
Beschreibung:Online Resource
ISSN:2469-9969
DOI:10.1103/PhysRevB.110.104102