Spectral eigenfunction decomposition of a Fokker-Planck operator for relativistic heavy-ion collisions

A spectral solution method is proposed to solve a previously developed non-equilibrium statistical model describing partial thermalization of produced charged hadrons in relativistic heavy-ion collisions, thus improving the accuracy of the numerical solution. The particle’s phase-space trajectories...

Full description

Saved in:
Bibliographic Details
Main Authors: Rizzi, Alessandro (Author) , Wolschin, Georg (Author)
Format: Article (Journal)
Language:English
Published: 2024
In: The European physical journal. A, Hadrons and nuclei
Year: 2024, Volume: 60, Issue: 9
ISSN:1434-601X
DOI:10.1140/epja/s10050-024-01410-7
Online Access:Verlag, kostenfrei, Volltext: https://doi.org/10.1140/epja/s10050-024-01410-7
Get full text
Author Notes:A. Rizzi, G. Wolschin (Institut für Theoretische Physik der Universität Heidelberg)
Description
Summary:A spectral solution method is proposed to solve a previously developed non-equilibrium statistical model describing partial thermalization of produced charged hadrons in relativistic heavy-ion collisions, thus improving the accuracy of the numerical solution. The particle’s phase-space trajectories are treated as a drift-diffusion stochastic process, leading to a Fokker-Planck equation (FPE) for the single-particle probability distribution function. The drift and diffusion coefficients are derived from the expected asymptotic states via appropriate fluctuation-dissipation relations, and the resulting FPE is then solved numerically using a spectral eigenfunction decomposition. The calculated time-dependent particle distributions are compared to Pb-Pb data from the ATLAS and ALICE collaborations at the Large Hadron Collider.
Item Description:Online veröffentlicht: 30. September 2024
Gesehen am 26.02.2025
Physical Description:Online Resource
ISSN:1434-601X
DOI:10.1140/epja/s10050-024-01410-7