Tiling with monochromatic bipartite graphs of bounded maximum degree

We prove that for any r∈N\rın \mathbb N\, there exists a constant Cr\C_r\ such that the following is true. Let F=F1,F2,⋯\mathcal F=łbrace F_1,F_2,\dots \rbrace\ be an infinite sequence of bipartite graphs such that |V(Fi)|=i\|V(F_i)|=i\ and Δ(Fi)⩽Δ\Delta (F_i)łeqslant \Delta\ hold for all i\i\. Then...

Full description

Saved in:
Bibliographic Details
Main Authors: Girao, Antonio (Author) , Janzer, Oliver (Author)
Format: Article (Journal)
Language:English
Published: [26 September 2024]
In: Mathematika
Year: 2024, Volume: 70, Issue: 4, Pages: e12280-1-e12280-22
ISSN:2041-7942
DOI:10.1112/mtk.12280
Online Access:Verlag, kostenfrei, Volltext: https://doi.org/10.1112/mtk.12280
Verlag, kostenfrei, Volltext: https://onlinelibrary.wiley.com/doi/abs/10.1112/mtk.12280
Get full text
Author Notes:António Girão, Oliver Janzer
Description
Summary:We prove that for any r∈N\rın \mathbb N\, there exists a constant Cr\C_r\ such that the following is true. Let F=F1,F2,⋯\mathcal F=łbrace F_1,F_2,\dots \rbrace\ be an infinite sequence of bipartite graphs such that |V(Fi)|=i\|V(F_i)|=i\ and Δ(Fi)⩽Δ\Delta (F_i)łeqslant \Delta\ hold for all i\i\. Then, in any r\r\-edge-coloured complete graph Kn\K_n\, there is a collection of at most exp(CrΔ)\exp (C_r\Delta)\ monochromatic subgraphs, each of which is isomorphic to an element of F\mathcal F\, whose vertex sets partition V(Kn)\V(K_n)\. This proves a conjecture of Corsten and Mendonça in a strong form and generalises results on the multi-colour Ramsey numbers of bounded-degree bipartite graphs. It also settles the bipartite case of a general conjecture of Grinshpun and Sárközy.
Item Description:Gesehen am 27.02.2025
Physical Description:Online Resource
ISSN:2041-7942
DOI:10.1112/mtk.12280