Tiling with monochromatic bipartite graphs of bounded maximum degree

We prove that for any r∈N\rın \mathbb N\, there exists a constant Cr\C_r\ such that the following is true. Let F=F1,F2,⋯\mathcal F=łbrace F_1,F_2,\dots \rbrace\ be an infinite sequence of bipartite graphs such that |V(Fi)|=i\|V(F_i)|=i\ and Δ(Fi)⩽Δ\Delta (F_i)łeqslant \Delta\ hold for all i\i\. Then...

Full description

Saved in:
Bibliographic Details
Main Authors: Girao, Antonio (Author) , Janzer, Oliver (Author)
Format: Article (Journal)
Language:English
Published: [26 September 2024]
In: Mathematika
Year: 2024, Volume: 70, Issue: 4, Pages: e12280-1-e12280-22
ISSN:2041-7942
DOI:10.1112/mtk.12280
Online Access:Verlag, kostenfrei, Volltext: https://doi.org/10.1112/mtk.12280
Verlag, kostenfrei, Volltext: https://onlinelibrary.wiley.com/doi/abs/10.1112/mtk.12280
Get full text
Author Notes:António Girão, Oliver Janzer

MARC

LEADER 00000caa a2200000 c 4500
001 1918743339
003 DE-627
005 20250716234502.0
007 cr uuu---uuuuu
008 250227s2024 xx |||||o 00| ||eng c
024 7 |a 10.1112/mtk.12280  |2 doi 
035 |a (DE-627)1918743339 
035 |a (DE-599)KXP1918743339 
035 |a (OCoLC)1528019806 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 27  |2 sdnb 
100 1 |a Girao, Antonio  |e VerfasserIn  |0 (DE-588)1256755230  |0 (DE-627)1800839561  |4 aut 
245 1 0 |a Tiling with monochromatic bipartite graphs of bounded maximum degree  |c António Girão, Oliver Janzer 
264 1 |c [26 September 2024] 
300 |a 22 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Gesehen am 27.02.2025 
520 |a We prove that for any r∈N\rın \mathbb N\, there exists a constant Cr\C_r\ such that the following is true. Let F=F1,F2,⋯\mathcal F=łbrace F_1,F_2,\dots \rbrace\ be an infinite sequence of bipartite graphs such that |V(Fi)|=i\|V(F_i)|=i\ and Δ(Fi)⩽Δ\Delta (F_i)łeqslant \Delta\ hold for all i\i\. Then, in any r\r\-edge-coloured complete graph Kn\K_n\, there is a collection of at most exp(CrΔ)\exp (C_r\Delta)\ monochromatic subgraphs, each of which is isomorphic to an element of F\mathcal F\, whose vertex sets partition V(Kn)\V(K_n)\. This proves a conjecture of Corsten and Mendonça in a strong form and generalises results on the multi-colour Ramsey numbers of bounded-degree bipartite graphs. It also settles the bipartite case of a general conjecture of Grinshpun and Sárközy. 
700 1 |a Janzer, Oliver  |e VerfasserIn  |0 (DE-588)131542438X  |0 (DE-627)1877498025  |4 aut 
773 0 8 |i Enthalten in  |t Mathematika  |d Hoboken, NJ : Wiley, 1954  |g 70(2024), 4, Artikel-ID e12280, Seite e12280-1-e12280-22  |h Online-Ressource  |w (DE-627)617088764  |w (DE-600)2532691-0  |w (DE-576)318042975  |x 2041-7942  |7 nnas  |a Tiling with monochromatic bipartite graphs of bounded maximum degree 
773 1 8 |g volume:70  |g year:2024  |g number:4  |g elocationid:e12280  |g pages:e12280-1-e12280-22  |g extent:22  |a Tiling with monochromatic bipartite graphs of bounded maximum degree 
856 4 0 |u https://doi.org/10.1112/mtk.12280  |x Verlag  |x Resolving-System  |z kostenfrei  |3 Volltext 
856 4 0 |u https://onlinelibrary.wiley.com/doi/abs/10.1112/mtk.12280  |x Verlag  |z kostenfrei  |3 Volltext 
951 |a AR 
992 |a 20250227 
993 |a Article 
994 |a 2024 
998 |g 1256755230  |a Girao, Antonio  |m 1256755230:Girao, Antonio  |d 700000  |d 728500  |e 700000PG1256755230  |e 728500PG1256755230  |k 0/700000/  |k 1/700000/728500/  |p 1  |x j 
999 |a KXP-PPN1918743339  |e 4674337267 
BIB |a Y 
SER |a journal 
JSO |a {"note":["Gesehen am 27.02.2025"],"type":{"media":"Online-Ressource","bibl":"article-journal"},"recId":"1918743339","language":["eng"],"title":[{"title_sort":"Tiling with monochromatic bipartite graphs of bounded maximum degree","title":"Tiling with monochromatic bipartite graphs of bounded maximum degree"}],"person":[{"display":"Girao, Antonio","roleDisplay":"VerfasserIn","role":"aut","family":"Girao","given":"Antonio"},{"roleDisplay":"VerfasserIn","display":"Janzer, Oliver","role":"aut","family":"Janzer","given":"Oliver"}],"physDesc":[{"extent":"22 S."}],"relHost":[{"pubHistory":["1.1954 -"],"part":{"extent":"22","text":"70(2024), 4, Artikel-ID e12280, Seite e12280-1-e12280-22","volume":"70","pages":"e12280-1-e12280-22","issue":"4","year":"2024"},"type":{"bibl":"periodical","media":"Online-Ressource"},"disp":"Tiling with monochromatic bipartite graphs of bounded maximum degreeMathematika","note":["Gesehen am 03.05.2024","Urheber anfangs: Department of Mathematics, University College, London"],"language":["eng"],"corporate":[{"role":"isb","display":"London Mathematical Society","roleDisplay":"Herausgebendes Organ"},{"roleDisplay":"Herausgebendes Organ","display":"University College London","role":"isb"}],"recId":"617088764","title":[{"title_sort":"Mathematika","subtitle":"a journal of pure and applied mathematics","title":"Mathematika"}],"physDesc":[{"extent":"Online-Ressource"}],"origin":[{"dateIssuedDisp":"1954-","dateIssuedKey":"1954","publisher":"Wiley ; Department of Mathematics ; Cambridge University Press","publisherPlace":"Hoboken, NJ ; London ; Cambridge"}],"id":{"issn":["2041-7942"],"zdb":["2532691-0"],"eki":["617088764"],"doi":["10.1002/(ISSN)2041-7942"]},"name":{"displayForm":["London Mathematical Society, UCL"]}}],"origin":[{"dateIssuedKey":"2024","dateIssuedDisp":"[26 September 2024]"}],"id":{"eki":["1918743339"],"doi":["10.1112/mtk.12280"]},"name":{"displayForm":["António Girão, Oliver Janzer"]}} 
SRT |a GIRAOANTONTILINGWITH2620