Tiling with monochromatic bipartite graphs of bounded maximum degree
We prove that for any r∈N\rın \mathbb N\, there exists a constant Cr\C_r\ such that the following is true. Let F=F1,F2,⋯\mathcal F=łbrace F_1,F_2,\dots \rbrace\ be an infinite sequence of bipartite graphs such that |V(Fi)|=i\|V(F_i)|=i\ and Δ(Fi)⩽Δ\Delta (F_i)łeqslant \Delta\ hold for all i\i\. Then...
Saved in:
| Main Authors: | , |
|---|---|
| Format: | Article (Journal) |
| Language: | English |
| Published: |
[26 September 2024]
|
| In: |
Mathematika
Year: 2024, Volume: 70, Issue: 4, Pages: e12280-1-e12280-22 |
| ISSN: | 2041-7942 |
| DOI: | 10.1112/mtk.12280 |
| Online Access: | Verlag, kostenfrei, Volltext: https://doi.org/10.1112/mtk.12280 Verlag, kostenfrei, Volltext: https://onlinelibrary.wiley.com/doi/abs/10.1112/mtk.12280 |
| Author Notes: | António Girão, Oliver Janzer |
MARC
| LEADER | 00000caa a2200000 c 4500 | ||
|---|---|---|---|
| 001 | 1918743339 | ||
| 003 | DE-627 | ||
| 005 | 20250716234502.0 | ||
| 007 | cr uuu---uuuuu | ||
| 008 | 250227s2024 xx |||||o 00| ||eng c | ||
| 024 | 7 | |a 10.1112/mtk.12280 |2 doi | |
| 035 | |a (DE-627)1918743339 | ||
| 035 | |a (DE-599)KXP1918743339 | ||
| 035 | |a (OCoLC)1528019806 | ||
| 040 | |a DE-627 |b ger |c DE-627 |e rda | ||
| 041 | |a eng | ||
| 084 | |a 27 |2 sdnb | ||
| 100 | 1 | |a Girao, Antonio |e VerfasserIn |0 (DE-588)1256755230 |0 (DE-627)1800839561 |4 aut | |
| 245 | 1 | 0 | |a Tiling with monochromatic bipartite graphs of bounded maximum degree |c António Girão, Oliver Janzer |
| 264 | 1 | |c [26 September 2024] | |
| 300 | |a 22 | ||
| 336 | |a Text |b txt |2 rdacontent | ||
| 337 | |a Computermedien |b c |2 rdamedia | ||
| 338 | |a Online-Ressource |b cr |2 rdacarrier | ||
| 500 | |a Gesehen am 27.02.2025 | ||
| 520 | |a We prove that for any r∈N\rın \mathbb N\, there exists a constant Cr\C_r\ such that the following is true. Let F=F1,F2,⋯\mathcal F=łbrace F_1,F_2,\dots \rbrace\ be an infinite sequence of bipartite graphs such that |V(Fi)|=i\|V(F_i)|=i\ and Δ(Fi)⩽Δ\Delta (F_i)łeqslant \Delta\ hold for all i\i\. Then, in any r\r\-edge-coloured complete graph Kn\K_n\, there is a collection of at most exp(CrΔ)\exp (C_r\Delta)\ monochromatic subgraphs, each of which is isomorphic to an element of F\mathcal F\, whose vertex sets partition V(Kn)\V(K_n)\. This proves a conjecture of Corsten and Mendonça in a strong form and generalises results on the multi-colour Ramsey numbers of bounded-degree bipartite graphs. It also settles the bipartite case of a general conjecture of Grinshpun and Sárközy. | ||
| 700 | 1 | |a Janzer, Oliver |e VerfasserIn |0 (DE-588)131542438X |0 (DE-627)1877498025 |4 aut | |
| 773 | 0 | 8 | |i Enthalten in |t Mathematika |d Hoboken, NJ : Wiley, 1954 |g 70(2024), 4, Artikel-ID e12280, Seite e12280-1-e12280-22 |h Online-Ressource |w (DE-627)617088764 |w (DE-600)2532691-0 |w (DE-576)318042975 |x 2041-7942 |7 nnas |a Tiling with monochromatic bipartite graphs of bounded maximum degree |
| 773 | 1 | 8 | |g volume:70 |g year:2024 |g number:4 |g elocationid:e12280 |g pages:e12280-1-e12280-22 |g extent:22 |a Tiling with monochromatic bipartite graphs of bounded maximum degree |
| 856 | 4 | 0 | |u https://doi.org/10.1112/mtk.12280 |x Verlag |x Resolving-System |z kostenfrei |3 Volltext |
| 856 | 4 | 0 | |u https://onlinelibrary.wiley.com/doi/abs/10.1112/mtk.12280 |x Verlag |z kostenfrei |3 Volltext |
| 951 | |a AR | ||
| 992 | |a 20250227 | ||
| 993 | |a Article | ||
| 994 | |a 2024 | ||
| 998 | |g 1256755230 |a Girao, Antonio |m 1256755230:Girao, Antonio |d 700000 |d 728500 |e 700000PG1256755230 |e 728500PG1256755230 |k 0/700000/ |k 1/700000/728500/ |p 1 |x j | ||
| 999 | |a KXP-PPN1918743339 |e 4674337267 | ||
| BIB | |a Y | ||
| SER | |a journal | ||
| JSO | |a {"note":["Gesehen am 27.02.2025"],"type":{"media":"Online-Ressource","bibl":"article-journal"},"recId":"1918743339","language":["eng"],"title":[{"title_sort":"Tiling with monochromatic bipartite graphs of bounded maximum degree","title":"Tiling with monochromatic bipartite graphs of bounded maximum degree"}],"person":[{"display":"Girao, Antonio","roleDisplay":"VerfasserIn","role":"aut","family":"Girao","given":"Antonio"},{"roleDisplay":"VerfasserIn","display":"Janzer, Oliver","role":"aut","family":"Janzer","given":"Oliver"}],"physDesc":[{"extent":"22 S."}],"relHost":[{"pubHistory":["1.1954 -"],"part":{"extent":"22","text":"70(2024), 4, Artikel-ID e12280, Seite e12280-1-e12280-22","volume":"70","pages":"e12280-1-e12280-22","issue":"4","year":"2024"},"type":{"bibl":"periodical","media":"Online-Ressource"},"disp":"Tiling with monochromatic bipartite graphs of bounded maximum degreeMathematika","note":["Gesehen am 03.05.2024","Urheber anfangs: Department of Mathematics, University College, London"],"language":["eng"],"corporate":[{"role":"isb","display":"London Mathematical Society","roleDisplay":"Herausgebendes Organ"},{"roleDisplay":"Herausgebendes Organ","display":"University College London","role":"isb"}],"recId":"617088764","title":[{"title_sort":"Mathematika","subtitle":"a journal of pure and applied mathematics","title":"Mathematika"}],"physDesc":[{"extent":"Online-Ressource"}],"origin":[{"dateIssuedDisp":"1954-","dateIssuedKey":"1954","publisher":"Wiley ; Department of Mathematics ; Cambridge University Press","publisherPlace":"Hoboken, NJ ; London ; Cambridge"}],"id":{"issn":["2041-7942"],"zdb":["2532691-0"],"eki":["617088764"],"doi":["10.1002/(ISSN)2041-7942"]},"name":{"displayForm":["London Mathematical Society, UCL"]}}],"origin":[{"dateIssuedKey":"2024","dateIssuedDisp":"[26 September 2024]"}],"id":{"eki":["1918743339"],"doi":["10.1112/mtk.12280"]},"name":{"displayForm":["António Girão, Oliver Janzer"]}} | ||
| SRT | |a GIRAOANTONTILINGWITH2620 | ||