The age of foundation models

The development of clinically relevant artificial intelligence (AI) models has traditionally required access to extensive labelled datasets, which inevitably centre AI advances around large centres and private corporations. Data availability has also dictated the development of AI applications: most...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Lipkova, Jana (VerfasserIn) , Kather, Jakob Nikolas (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: 05 September 2024
In: Nature reviews. Clinical oncology
Year: 2024, Jahrgang: 21, Heft: 11, Pages: 769-770
ISSN:1759-4782
DOI:10.1038/s41571-024-00941-8
Online-Zugang:Verlag, kostenfrei, Volltext: https://doi.org/10.1038/s41571-024-00941-8
Verlag, kostenfrei, Volltext: https://www.nature.com/articles/s41571-024-00941-8
Volltext
Verfasserangaben:Jana Lipkova & Jakob Nikolas Kather
Beschreibung
Zusammenfassung:The development of clinically relevant artificial intelligence (AI) models has traditionally required access to extensive labelled datasets, which inevitably centre AI advances around large centres and private corporations. Data availability has also dictated the development of AI applications: most studies focus on common cancer types, and leave rare diseases behind. However, this paradigm is changing with the advent of foundation models, which enable the training of more powerful and robust AI systems using much smaller datasets.
Beschreibung:Gesehen am 28.02.2025
Beschreibung:Online Resource
ISSN:1759-4782
DOI:10.1038/s41571-024-00941-8