Time-dependent condensate formation in ultracold atoms with energy-dependent transport coefficients
Time-dependent Bose-Einstein condensate formation in ultracold atoms is investigated in a nonlinear diffusion model. For constant transport coefficients, the model has been solved analytically. Here, we extend it to include energy-dependent transport coefficients and numerically solve the nonlinear...
Gespeichert in:
| Hauptverfasser: | , |
|---|---|
| Dokumenttyp: | Article (Journal) |
| Sprache: | Englisch |
| Veröffentlicht: |
2024
|
| In: |
Physical review
Year: 2024, Jahrgang: 110, Heft: 2, Pages: 023305-1-023305-9 |
| ISSN: | 2469-9934 |
| DOI: | 10.1103/PhysRevA.110.023305 |
| Online-Zugang: | Verlag, lizenzpflichtig, Volltext: https://doi.org/10.1103/PhysRevA.110.023305 Verlag, lizenzpflichtig, Volltext: https://link.aps.org/doi/10.1103/PhysRevA.110.023305 |
| Verfasserangaben: | M. Larsson and G. Wolschin |
| Zusammenfassung: | Time-dependent Bose-Einstein condensate formation in ultracold atoms is investigated in a nonlinear diffusion model. For constant transport coefficients, the model has been solved analytically. Here, we extend it to include energy-dependent transport coefficients and numerically solve the nonlinear equation. Our results are compared with the earlier analytical model for constant transport coefficients, and with recent deep-quench data for 39K at various scattering lengths. Some nonphysical predictions from the constant-coefficient model are resolved using energy-dependent drift and diffusion. |
|---|---|
| Beschreibung: | Online veröffentlicht: 6. August 2024 Gesehen am 03.03.2025 |
| Beschreibung: | Online Resource |
| ISSN: | 2469-9934 |
| DOI: | 10.1103/PhysRevA.110.023305 |