Reconstruction of patient-specific confounders in AI-based radiologic image interpretation using generative pretraining

Reliably detecting potentially misleading patterns in automated diagnostic assistance systems, such as those powered by artificial intelligence (AI), is crucial for instilling user trust and ensuring reliability. Current techniques fall short in visualizing such confounding factors. We propose DiffC...

Full description

Saved in:
Bibliographic Details
Main Authors: Han, Tianyu (Author) , Žigutytė, Laura (Author) , Huck, Luisa (Author) , Huppertz, Marc Sebastian (Author) , Siepmann, Robert (Author) , Gandelsman, Yossi (Author) , Blüthgen, Christian (Author) , Khader, Firas (Author) , Kuhl, Christiane (Author) , Nebelung, Sven (Author) , Kather, Jakob Nikolas (Author) , Truhn, Daniel (Author)
Format: Article (Journal)
Language:English
Published: 17 September 2024
In: Cell reports. Medicine
Year: 2024, Volume: 5, Issue: 9, Pages: 1-11
ISSN:2666-3791
DOI:10.1016/j.xcrm.2024.101713
Online Access:Verlag, kostenfrei, Volltext: https://doi.org/10.1016/j.xcrm.2024.101713
Verlag, kostenfrei, Volltext: https://www.sciencedirect.com/science/article/pii/S2666379124004348
Get full text
Author Notes:Tianyu Han, Laura Žigutytė, Luisa Huck, Marc Sebastian Huppertz, Robert Siepmann, Yossi Gandelsman, Christian Blüthgen, Firas Khader, Christiane Kuhl, Sven Nebelung, Jakob Nikolas Kather, Daniel Truhn

MARC

LEADER 00000caa a2200000 c 4500
001 1923049844
003 DE-627
005 20250717010416.0
007 cr uuu---uuuuu
008 250416s2024 xx |||||o 00| ||eng c
024 7 |a 10.1016/j.xcrm.2024.101713  |2 doi 
035 |a (DE-627)1923049844 
035 |a (DE-599)KXP1923049844 
035 |a (OCoLC)1528044681 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 33  |2 sdnb 
100 1 |a Han, Tianyu  |e VerfasserIn  |0 (DE-588)1278510001  |0 (DE-627)1831430037  |4 aut 
245 1 0 |a Reconstruction of patient-specific confounders in AI-based radiologic image interpretation using generative pretraining  |c Tianyu Han, Laura Žigutytė, Luisa Huck, Marc Sebastian Huppertz, Robert Siepmann, Yossi Gandelsman, Christian Blüthgen, Firas Khader, Christiane Kuhl, Sven Nebelung, Jakob Nikolas Kather, Daniel Truhn 
264 1 |c 17 September 2024 
300 |b Illustrationen, Diagramme 
300 |a 18 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Gesehen am 16.04.2025 
520 |a Reliably detecting potentially misleading patterns in automated diagnostic assistance systems, such as those powered by artificial intelligence (AI), is crucial for instilling user trust and ensuring reliability. Current techniques fall short in visualizing such confounding factors. We propose DiffChest, a self-conditioned diffusion model trained on 515,704 chest radiographs from 194,956 patients across the US and Europe. DiffChest provides patient-specific explanations and visualizes confounding factors that might mislead the model. The high inter-reader agreement, with Fleiss’ kappa values of 0.8 or higher, validates its capability to identify treatment-related confounders. Confounders are accurately detected with 10%-100% prevalence rates. The pretraining process optimizes the model for relevant imaging information, resulting in excellent diagnostic accuracy for 11 chest conditions, including pleural effusion and heart insufficiency. Our findings highlight the potential of diffusion models in medical image classification, providing insights into confounding factors and enhancing model robustness and reliability. 
650 4 |a confounders 
650 4 |a counterfactual explanations 
650 4 |a deep learning 
650 4 |a explainability 
650 4 |a generative models 
650 4 |a medical imaging 
650 4 |a self-supervised training 
700 1 |a Žigutytė, Laura  |e VerfasserIn  |4 aut 
700 1 |a Huck, Luisa  |e VerfasserIn  |4 aut 
700 1 |a Huppertz, Marc Sebastian  |e VerfasserIn  |4 aut 
700 1 |a Siepmann, Robert  |e VerfasserIn  |4 aut 
700 1 |a Gandelsman, Yossi  |e VerfasserIn  |4 aut 
700 1 |a Blüthgen, Christian  |e VerfasserIn  |4 aut 
700 1 |a Khader, Firas  |e VerfasserIn  |4 aut 
700 1 |8 1\p  |a Kuhl, Christiane  |d 1966-  |e VerfasserIn  |0 (DE-588)1082384011  |0 (DE-627)847427994  |0 (DE-576)455377782  |4 aut 
700 1 |a Nebelung, Sven  |e VerfasserIn  |4 aut 
700 1 |a Kather, Jakob Nikolas  |d 1989-  |e VerfasserIn  |0 (DE-588)1064064914  |0 (DE-627)812897587  |0 (DE-576)423589091  |4 aut 
700 1 |8 2\p  |a Truhn, Daniel  |e VerfasserIn  |0 (DE-588)1047348306  |0 (DE-627)778145913  |0 (DE-576)400927314  |4 aut 
773 0 8 |i Enthalten in  |t Cell reports. Medicine  |d Cambridge, MA : Cell Press, 2020  |g Volume 5, issue 9 (17 September 2024), article no. 101713, 1 ungezählte Seite, 11 Seiten, Seite e1-e6  |h Online-Ressource  |w (DE-627)1696877792  |w (DE-600)3019420-9  |x 2666-3791  |7 nnas  |a Reconstruction of patient-specific confounders in AI-based radiologic image interpretation using generative pretraining 
773 1 8 |g volume:5  |g year:2024  |g number:9  |g month:09  |g elocationid:101713  |g pages:1-11  |g extent:18  |a Reconstruction of patient-specific confounders in AI-based radiologic image interpretation using generative pretraining 
856 4 0 |u https://doi.org/10.1016/j.xcrm.2024.101713  |x Verlag  |x Resolving-System  |z kostenfrei  |3 Volltext 
856 4 0 |u https://www.sciencedirect.com/science/article/pii/S2666379124004348  |x Verlag  |z kostenfrei  |3 Volltext 
883 |8 1\p  |a cgwrk  |d 20250505  |q DE-101  |u https://d-nb.info/provenance/plan#cgwrk 
883 |8 2\p  |a cgwrk  |d 20250505  |q DE-101  |u https://d-nb.info/provenance/plan#cgwrk 
951 |a AR 
992 |a 20250416 
993 |a Article 
994 |a 2024 
998 |g 1064064914  |a Kather, Jakob Nikolas  |m 1064064914:Kather, Jakob Nikolas  |d 910000  |d 910100  |e 910000PK1064064914  |e 910100PK1064064914  |k 0/910000/  |k 1/910000/910100/  |p 11 
999 |a KXP-PPN1923049844  |e 4706002877 
BIB |a Y 
SER |a journal 
JSO |a {"name":{"displayForm":["Tianyu Han, Laura Žigutytė, Luisa Huck, Marc Sebastian Huppertz, Robert Siepmann, Yossi Gandelsman, Christian Blüthgen, Firas Khader, Christiane Kuhl, Sven Nebelung, Jakob Nikolas Kather, Daniel Truhn"]},"recId":"1923049844","language":["eng"],"note":["Gesehen am 16.04.2025"],"origin":[{"dateIssuedKey":"2024","dateIssuedDisp":"17 September 2024"}],"id":{"doi":["10.1016/j.xcrm.2024.101713"],"eki":["1923049844"]},"title":[{"title_sort":"Reconstruction of patient-specific confounders in AI-based radiologic image interpretation using generative pretraining","title":"Reconstruction of patient-specific confounders in AI-based radiologic image interpretation using generative pretraining"}],"relHost":[{"disp":"Reconstruction of patient-specific confounders in AI-based radiologic image interpretation using generative pretrainingCell reports. Medicine","origin":[{"publisherPlace":"Cambridge, MA ; Maryland Heights, MO","publisher":"Cell Press ; Elsevier","dateIssuedDisp":"[2020]-"}],"language":["eng"],"part":{"issue":"9","pages":"1-11","text":"Volume 5, issue 9 (17 September 2024), article no. 101713, 1 ungezählte Seite, 11 Seiten, Seite e1-e6","year":"2024","volume":"5","extent":"18"},"note":["Gesehen am 29. April 2020"],"recId":"1696877792","type":{"bibl":"periodical","media":"Online-Ressource"},"physDesc":[{"extent":"Online-Ressource"}],"title":[{"partname":"Medicine","title":"Cell reports","title_sort":"Cell reports"}],"id":{"eki":["1696877792"],"issn":["2666-3791"],"zdb":["3019420-9"]},"pubHistory":["Volume 1, issue 1 (2020)-"]}],"physDesc":[{"extent":"18 S.","noteIll":"Illustrationen, Diagramme"}],"type":{"bibl":"article-journal","media":"Online-Ressource"},"person":[{"display":"Han, Tianyu","family":"Han","given":"Tianyu","role":"aut"},{"role":"aut","given":"Laura","family":"Žigutytė","display":"Žigutytė, Laura"},{"family":"Huck","display":"Huck, Luisa","role":"aut","given":"Luisa"},{"given":"Marc Sebastian","role":"aut","display":"Huppertz, Marc Sebastian","family":"Huppertz"},{"role":"aut","given":"Robert","family":"Siepmann","display":"Siepmann, Robert"},{"role":"aut","given":"Yossi","family":"Gandelsman","display":"Gandelsman, Yossi"},{"display":"Blüthgen, Christian","family":"Blüthgen","given":"Christian","role":"aut"},{"display":"Khader, Firas","family":"Khader","given":"Firas","role":"aut"},{"family":"Kuhl","display":"Kuhl, Christiane","role":"aut","given":"Christiane"},{"given":"Sven","role":"aut","display":"Nebelung, Sven","family":"Nebelung"},{"display":"Kather, Jakob Nikolas","family":"Kather","given":"Jakob Nikolas","role":"aut"},{"display":"Truhn, Daniel","family":"Truhn","given":"Daniel","role":"aut"}]} 
SRT |a HANTIANYUZRECONSTRUC1720